Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрирование гомогенное в присутствии

    Перейдем к рассмотрению гомогенного катализа комплексными соединениями переходных металлов. При таком катализе в присутствии комплексных катализаторов (чаще всего катионов переходных металлов) осуществляют реакции восстановления и окисления, гидрирования и гидратации, полимеризации и изомеризации. Примером может служить метод промышленного окисления этилена до ацетальдегида в водной среде в присутствии палладиевого катализатора [c.183]


    ГОМОГЕННОЕ КАТАЛИТИЧЕСКОЕ ГИДРИРОВАНИЕ. Гидрирование в присутствии металлических катализаторов имеет некоторые недостатки, так как иногда при этом происходит изомеризация алкенов и (или) разрыв углерод-углеродных простых связей. За последнее десятилетие большое развитие получило гомогенное каталитическое гидрирование, особенно благодаря работам Уилкинсона . Создана группа катализаторов гидрирования, обладающих весьма ценными свойствами они растворимы в органических растворителях и не вызывают перегруппировок или разложения исходных алкенов. Столь интенсивное развитие химии каталитического гидрирования явилось результатом больших успехов и синтетической органической химии, и новых исследований в неорганической химии. [c.305]

    Медь, отложенная на окиси церия и двуокиси кремния, применялась [45] в реакциях расщепления, изомеризации, образования кислот, гидрогенизации и гидратации. Определенный интерес представляет сопоставление активности этого катализатора при гидрировании и гидрогенолизе различных углеводов (сахарозы, глюкозы, фруктозы и др.). Глюкоза и фруктоза начинают гидрироваться при 150°С, сахароза — при 180°С, сорбит и глицерин — выше 200 °С. В отсутствие гомогенных добавок катализатор преимущественно ведет процесс гидрирования, в присутствии таких добавок — гидрогенолиз, причем степень расщепления зависит как от природы углевода, так и от количества добавки (гидроокиси кальция). [c.46]

    Таким образом, вопрос влияния алкильных заместителей на скорость гидрирований бензольного кольца достаточно сложен. В этой связи значительный интерес представляет использование гомогенных катализаторов, гидрирование в присутствии которых свободно от адсорбционных осложнений. [c.144]

    Гомогенное каталитическое гидрирование в присутствии ацетата меди (I). [c.185]

    Процесс гомогенного гидрирования в присутствии растворимого катализатора включает следующие реакции с промежуточным образованием металлоорганического соединения [39, 40]  [c.50]

    Асимметрическое гомогенное гидрирование в присутствии хиральных комплексов родия [c.338]

    Так как гидрирование в присутствии карбонилов кобальта идет при более высоких температурах, чем гидроформилирование, делались попытки создать технологию процесса оксосинтеза с гомогенно-каталитическим гидрированием полученных альдегидов. Были предложены [211] способ и установка для непосредственного получения спиртов из олефинов и синтез-газа. Согласно этому патенту, при 130—160 °С и 15 МПа получают альдегиды, которые гидрируются в спирты при подъеме температуры до 160—220 °С. [c.178]

    Кинетика гидрирования. Гидрирование может протекать в гомогенной (газовой или жидкостной), гетерогенной (газ—жидкость, жидкость — жидкость, газ — твердое тело, жидкость — твердое тело) системах в присутствии катализаторов или без них, в ионных средах (в результате перехода электронов) и т. д. [c.239]


    Промотированном различными металлами в присутствии гомогенной добавки Ва(0Н)2 (0,1 моль на 1 моль глюкозы). Эксперименты проводились в автоклаве с интенсивным перемешиванием (2800 об/мин). Было установлено, что в интервале 40—120 С (при давлении водорода 12 МПа) протекает преимущественно гидрогенизация глюкозы с образованием сорбита. Выход глицерина и гликолей не превышает 10%. В интервале температур от 160 до 220°С начинает интенсивно идти гидрогенолиз связей С—С глюкозы с образованием все большего количества глицерина и гликолей. С ростом температуры происходит не только повышение энергии молекул реагирующих веществ, но и изменение их соотношения на поверхности катализатора, о чем свидетельствует величина смещения потенциала катализатора. При небольших смещениях потенциала (Дф 50—60 мВ) и, следовательно, при достаточно большом заполнении поверхности катализатора водородом идет в основном гидрирование глюкозы. Не исключено, что при большом заполнении поверхности катализатора водородом молекулы глюкозы имеют возможность контактировать с поверхностью только одним концом, вероятно карбонильной группой. С увеличением температуры поверхность катализатора все больше освобождается от водорода и при больших значениях Дф (200—250 мВ) наряду с указанной реакцией протекает гидрогенолиз связей С—С глюкозы, т. е. при меньших заполнениях поверхности катализатора водородом молекула глюкозы (имеющая по предварительным расчетам длину в 1 нм) может расположиться вдоль поверхности катализатора. Это способствует протеканию реакции гидрогеиолиза глюкозы. При больших смешениях потенциала (Дф>250 мВ) происходит дега- [c.83]

    В результате большой реакционной способности низшие алифатические альдегиды уже и процессе гидроформилирования превращаются на 30—40% в спирты. Если желают получать только альдегиды, полностью устранив побочный процесс восстановления их в спирты, то реакцию проводят в присутствии небольшого количества сероуглерода, который подавляет гетерогенное каталитическое гидрирование. Температуру процесса надо в этом случав держать как можно более низкой, чтобы пе создавать условий для гомогенного каталитического гидрирования. Этилен легко вступает в реакцию уже ири 100—110°. Под давлением водорода около 125 ат он через 8 мин. превращается па 50% в пропионовый альдегид и на 22% в диэтилкетон. При 500 ат он уже через 30 сек. почти полностью (на 92%) переходит в пропионовый альдегид [81]. [c.556]

    N1-катализаторов, которые были бы способны к низкотемпературному восстановлению так, например, в присутствии хлористого никеля можно восстанавливать при 180°, формиата и ацетата никеля— при 180—200°. Предлагались также различные никелевые мыла или карбонил никеля, а также никель-медные катализаторы, хорошо восстанавливающиеся при 170—190°. Из колоссального числа N1-катализаторов практическое значение имеет прежде всего карбонат никеля, осажденный на носитель (кизельгур, каолин). Для гидрирования насыщенный водородом катализатор затирают с маслом В совершенно гомогенную массу, которую затем нагревают, пропуская через нее водород, в течение нескольких часов при 240—250°. Такой катализатор нашел успешное применение на отечественных заводах. [c.359]

    Различают гетерогенный и гомогенный катализ. Типичный пример гетерогенного катализа — гидрирование этилена в присутствии металлического катализатора (например, палладия, платины или никеля), который помогает сблизиться молекулам водорода и этилена таким образом, чтобы они могли вступить в реакцию друг с другом. В то время как реагенты сорбируются на поверхности металла благодаря наличию я-электронов в молекуле этилена, продукт реакции (этап) десорбируется, освобождая место для следующих реагирующих молекул. [c.191]

    Различают катализ гомогенный и гетерогенный. Гомогенным называется катализ, когда катализатор образует одну фазу с реагирующей гомогенной системой, например, горение окиси углерода ускоряется присутствием следов влаги. Реакции инверсии сахара, гидролиза крахмала в воде ускоряются ионами водород. Гетерогенным называется катализ, когда катализатор образуй обособленную фазу, например, гидрирование углеводородов на никеле, синтез аммиака на железе и др. [c.234]

    Гидрирование идет в присутствии ряда гетерогенных и гомогенных металлических катализаторов (Pt, Pd, Ni, Си, Со), из которых только никель широко применяется в промышленности. Механизмы процессов, происходящих при частичном гидрировании природных ненасыщенных глицеридов, выяснены путем тщательного изу- [c.38]

    Активный катализатор или активный растворитель. Таких примеров известно очень много в частности, большое значение имеет восстановление кетонов и замещенных алкенов в оптически активные (хотя и не оптически чистые) вторичные спирты и замещенные алканы при гидрировании в присутствии хиральных гомогенных катализаторов (т. 3, реакции 16-26 и 15-10) [68]. В некоторых случаях, в частности ири гомогенном каталитическом гидрировании алкенов (т. 3, реакция 15-10), соотношение энан-тиомерных продуктов достигает 98 2 [69]. Другими примерами служат следующие реакции реакция вторичных алкильных реактивов Гриньяра с винилгалогенидами (т. 2, реакция 10-88) в присутствии хиральных комплексов переходных металлов [70], пре- [c.157]


    Используются различные катализаторы на основе меди (медь на кизельгуре, медь на диатомите, медно-хромовый). Температура гидрирования — 150—160 °С, объемная скорость подачи сырья — 0,2—0,25 ч"1, мольное соотношение водород/сырье = (10ч-25) 1. Регулирование соотношения водород/сырье достигается подачей водорода через обогреваемый сборник, в котором находится 2-этилгексеналь. Изменением температуры от 60 до 80 °С добиваются требуемого испарения сырья, и в реактор поступает гомогенная смесь альдегида и водорода. Степень превращения достигает 98—99% (из них 97% приходится на 2-этилгексанол). Основным побочным продуктом является 2-этилгексенол, в гидрогенизате присутствует также не вступивший в реакции альдегид и 2-этилгексаналь. [c.40]

    Обычно нри оксореакции протекает частичное гидрирование олефина. При 1-олефинах и обычной температуре оксореакции пнтенсивность этой реакции весьма мала, но значительно увеличивается при 190—20( Для некоторых олефинов реакция гидрирования может стать преобладающей. Хорошо известно, что окись углерода и сера являются энергичными каталитическими ядами, подавляющими реакцию гидрирования на твердых кобальтовых катализаторах. Однако реакции как гидрирования, так и гидрокарбонилирования протекают в Присутствии этих каталитических ядов [1 ]. Сущность этого явления была объяснена, исходя из теории гомогенного катализа [G8], в ходе исследования восстановления масляного альдегида при 185° и 140—210 ати. Полученные данные кратко рассмотрены ниже. В тех случаях, когда парциальное давление окиси углерода недостаточно для образования илп поддержания требуемой концентрации карбонила кобальта, гидрирование в присутствии окиси уг.т1ерода не протекает (табл. 1). [c.263]

    Ацетилены гидрируются в цыс-алкены при использовании в качестве катализатора системы палладий/карбонат кальция, обработанной ацетатом свинца (катализатор Линдлара) наилучшая селективность достигается при добавке хинолина или сульфида [199, 200]. Гомогенное гидрирование в присутствии катионных комплексов родия типа [НН (норборнаднен) (РРНМе2)з] СЮ обладает некоторыми преимуществами перед гетерогенными катализаторами типа катализатора Линдлара [201]. В другой удобной методике используется специальный никелевый катализатор (Р-2), приготовленный восстановлением ацетата никеля(П) действием МаВН4 в этаноле в присутствии этилендиамина [202]. [c.265]

    Гетерогенные катализаторы весьма эффективны при гидрировании ароматических соединений и широко применяются в органическом синтезе. Несмотря на значительное число исследований, известно сравнителыго мало гомогенных катализаторов, пригодных для гидрирования ароматических соединений, но н они пока что нашли лишь ограниченное применение. Инертность ароматического ядра по отношению к гидрированию в присутствии гомогенных катализаторов видна из того факта,, что даже при использовании очень активных гомогенных систем, например (21) или (34), в качестве растворителя обычно-применяют бензол. [c.275]

    Солянокислые водные растворы аниона [РиС14(Ь]ру)]2 катализируют реакцию гомогенного гидрирования малеиновой кислоты до янтарной кислоты при 80°С и давлении водорода 1 атм [232]. Механизм гидрирования в присутствии этого комплекса в противоположность системе [РиСи] " не включает первоначального образования п-комплекса [149]. [c.82]

    В последнее время в связи с теорией Е. И. Шпитальского была развита теория скрытого катализа первого и второго рода (Н. И. Кобозев [294], В. А. Тулупов [210, 295]), при котором благодаря образованию промежуточных продуктов с возбужденной формой субстрата конечное кинетическое уравнение оказывается примерно нулевого порядка по концентрации катализатора, т. е. катализатор переходит в разряд скрытых параметров . Такой скрытый катализ наблюдается при каталитическом жидкофазном гидрировании в присутствии стеаратов металлов, при жидкофазном i идрогалогенировании ацетилена в присутствии солей ртути, разложении метанола в газовой фазе под действием паров цинка, бактерицидном действии ионов Ag+ и др. Обнаружение скрытых форм катализа позволяет считать, что область катализа в гомогенных средах значительно шире и многообразнее, чем это выявляют обычные эксперименты, проводимые без детального кинетического анализа. Теория Е. И. Шпитальского является надежной основой для такого анализа. [c.133]

    Важным классом металлоорганических реакций является гидрирование органических соединений в условиях гомогенного катализа. Наиболее изученными субстратами оказались олефи-ны, хотя многие другие соединения, содержащие функциональные группы, например, ацетилены, альдегиды, кетоны, нитросоединения, арены, также подвергаются гидрированию в присутствии растворимых катализаторов. Известно множество гомогенных катализаторов гидрирования [1], однако лишь немногие нашли широкое применение в органическом синтезе. Для некоторых гомогенных катализаторов источником водорода необязательно служит Н2. Такие катализаторы переноса водорода образуют нужные гидриды металлов в качестве интермедиатов при взаимодействии со спиртами, другими гидридами типа КаВН4, муравьиной кислотой или при гидролизе карбонилсодержащих координационных соединений (в процессе конверсии водяного газа, который обсуждался в ч. 1, гл. 6 и будет рассмотрен в гл. 12). Поскольку такие катализаторы -по своим свойствам сходны с гомогенными катализаторами гидрирования, они также рассматриваются в настоящей главе. Сюда же включены процессы каталитического гидросилилирования и гидроцианирования, концептуально подобные гидрированию. [c.5]

    Низкие скорости изомеризации р- и -олефинов объясняются не только стерическими, но и термодинамическими ограничениями, так как при температурах гомогенного катализа содержание а-олефинов в равновесной смеси мало (см. гл. 1). В тех случаях когда а-олефины удаляют из реакционной среды, скорость изомеризации р--)-а- может быть существенно увеличена. Так, в системах Циглера — Натта скорость полимеризации а-олефинов значительно выше скорости их изомеризации, в то время как для р- и V- зависимость обратная. Поэтому а-олефины в присутствии АШз+Т1С1з полимеризуются, а р-олефины при контакте с такой системой переходят сначала в а-изомеры, образующие далее полимеры. Отметим также, что, по мнению некоторых исследователей [60], изомеризация и полимеризация протекают на разных центрах катализатора. Аналогичные представления высказаны и для изомеризации, сопутствующей окислению [20, с. 36] и гидрированию [60]. [c.115]

    О месте разрыва связей в гидрированном кольце можно судить по наличию в продуктах расщепления моно- или диалкильных производных бензола. Можно отметить, что моноалкилпроизводные обнаруживались главным образом в присутствии малоактивных (особенно в отношении изомеризации) катализаторов — металлических или окисных — при высоком давлении водорода. При гомогенном-деструктивном гидрировании тетралина в отсутствие катализатора также преобладали монозамещенные производные, а содержание дизамещенных было ничтожно мало. Только одни диалкилпроизвод-ные получались при атмосферном давлении в присутствии металлических катализаторов. При тщательном анализе гидрогенизата, полученного в присутствии катализатора У32, обладающего достаточно высокой изомеризующей активностью, был сделан вывод [c.247]

    Гетерогенные катализаторы (палладиевый, родиевый, никелевый и т. д.) позволяют проводить эту реакцию, но в гидрогенизате присутствуют продукты неполного гидрирования (циклододекатрнен и циклододекадиен) и полностью насыщенный углеводород—циклододекан. Поскольку эти продукты усложняют переработку гидрогенизата, а выделить их известными способами невозможно из-за сходных физико-химических характеристик, значительное внимание в последнее время уделяется гомогенным металлокомплексным катализаторам. [c.20]

    Уэндер, Орчин и Сторч [25] попытались проверить гомогенный характер реакции гидрирования. Для этого они измеряли скорость гидрирования масляного альдегида при 185° и давлении водорода 144 атм. Ими было проведено 3 опыта в присутствии тонкодисперсно го металлического кобальта прн различных давлениях окиси углерода, вводившейся одновременно с водородом. В результа 1 e реакции масляный альдегид восстанавливался до бутанола-1. Полученные данные приведены ниже. [c.206]

    Катализатор может находиться в одной фазе с субстратами иапример, все они могут находиться в растворе. В этом случае говорят о гомогенном катализе. Рассмотренный гидролиз этилового эфира аминоуксусной кислоты в присутствии солей меди— пример гомогенного катализа. Катализатор может образовать отдельную фазу (как правило, твердую). Тогда комплексы с субстратом образуются на поверхности раздела фаз, такой катализ называется гетерогенным. Примером гетерогенного катализа является любая реакция гидрирования органических соединений в присутствии переходного металла (например, палладия), который образует отдельную фазу. Гетерогенный катализ широко используется в промышленности. Его достоинство — отсутствие необходимости отделять продукты от катализатора после окончания процесса. [c.395]

    Одним из последних достижений является применение катализаторов гомогенного гидрирования, прототипом которых был хло-ротрис(трифенилфосфин)родий(1), открытый Уилкинсоном [83]. В присутствии этого растворимого катализатора присоединение водорода идет при комнатной температуре в различных растворителях олефины с концевой двойной связью гидрируются быстрее, чем олефины с внутренней двойной связью. Гомогенные катализаторы этого типа особенно пригодны для синтеза меченых алканов. Так, можно ввести в положения 1,2 два атома дейтерия. В случае же гетерогенных катализаторов обычно наблюдается интенсивный дейтерообмен. Используя гомогенные катализаторы, можно получить, например, 1,2-дидейтеродекан из децена-1 [84]  [c.131]


Смотреть страницы где упоминается термин Гидрирование гомогенное в присутствии: [c.58]    [c.188]    [c.73]    [c.562]    [c.230]    [c.58]    [c.46]    [c.188]    [c.498]    [c.387]    [c.178]    [c.206]    [c.310]    [c.181]    [c.176]    [c.177]    [c.80]    [c.131]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте