Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы защиты металлов от подземной коррозии

    Подземная коррозия металлов протекает в почвенных нлн грунтовых условиях и имеет обычно электрохимический характер. Подземные металлические конструкции трубопроводы, кабели, подземные резервуары и другие сооружения подвергаются прямому коррозионному воздействию грунта. Наличие в грунте влаги способствует электрохимическому протеканию коррозии. Максимальное коррозионное влияние оказывает влага при содержании ее в грунте - 20%. Самым распространенным методом защиты от подземной коррозии является нанесение на поверхность металла защитных покрытий, главным образом битумных. Для защиты от блуждающих токов в особо опасных местах применяют катодную [c.161]


    В грунтах, обладающих достаточно высокой электропроводностью, наиболее эффективным методом защиты металлических конструкций является электрохимическая защита как дополнение к изолирующим покрытиям или как самостоятельный способ защиты. Широкое применение в технике для защиты подземных металлических сооружений находит катодная поляризация (катодная защита), в результате которой потенциал сооружения смещается в отрицательную сторону, а скорость коррозии снижается. Катодная защита может быть осуществлена в двух вариантах с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) и путем применения протекторов из металлов с потенциалом, более отрицательным, чем у стали. Такими металлами являются магний, цинк и алюминий. При присоединении протектора к трубопроводу образуется гальванический элемент, катодом которого является стальной трубопровод, а анодом — магниевый или цинковый электрод. Электрохимическая защита подробно рассматривается в гл. XIX. [c.196]

    Методы защиты металлов от подземной коррозии 19  [c.195]

    Протекторная защита сравнительно эффективный, легко осуществимый и экономически выгодный метод защиты от коррозии металлических конструкций в нейтральных водных растворах — в морской воде, в почвенных водах и т. п. Поэтому протекторы широко применяются совместно с различного рода покрытиями как дополнительное средство защиты подземных и подводных металлических сооружений — трубопроводов, газопроводов, крупных резервуаров и т. п. Для защиты стальных конструкций чаще всего применяются цинковые и алюминиевые протекторы, а также сплавы на основе этих металлов. В кислых растворах электролитов протекторная защита используется ограниченно вследствие малой катодной поляризуемости защищаемого металла в этих растворах и слишком быстрого растворения металла — протектора. Эффективность протекторной защиты характеризуется целым рядом технологических показателей защитным эффектом, коэффициентом защитного действия, к. п. д., радиусом действия. Первые два показателя приняты также для характеристики эффективности катодной защиты. Под защитным эффектом (з. э.) понимают отношение разности скоростей коррозии металла без электрозащиты и при ее наличии к скорости коррозии без защиты  [c.240]


    В книге рассмотрены основы теории коррозии применительно к подземным металлическим сооружениям. Изложены результаты длительных коррозионных испытаний металлов и методы оценки коррозионной активности почв. Основное внимание уделено вопросам применения различных методов защиты от подземной коррозии. Наряду с описанием свойств широко применяемых битумных покрытий и методов их нанесения приводятся результаты промышленных испытаний различных полимерных покрытий. Катодная защита подземных металлических конструкций является весьма эффективным средством борьбы с коррозией. В книге освещается теория катодной защиты и излагаются методы расчета катодной и электро-дренажной защиты. [c.2]

    В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходимым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума. [c.7]

    МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ ПОДЗЕМНОЙ КОРРОЗИИ [c.194]

    Наиболее эффективный метод защиты от коррозии трубопроводов, резервуаров, обсадных колонн скважин, шлейфов и т. д. от подземной коррозии — это комплексная защита, которая включает одновременное применение изоляционных материалов и катодной поляризации. Применение только изоляционных покрытий не дает положительного эффекта из-за невозможности обеспечения полной сплошности покрытия, так как либо имеется заводской неустраненный брак, либо покрытия повреждаются при строительстве и монтаже, либо разрушаются в процессе эксплуатации в связи с воздействием температуры, механических напряжений и, наконец, времени. В местах нарушения изоляции агрессивная среда входит в контакт с металлом и обусловливает течение коррозионного процесса. Необходимо отметить, что из-за облегчения доступа деполяризатора (в основном кислорода) к металлу в дефектах изолированной конструкции скорость коррозии нередко выше скорости коррозии металла неизолированных конструкций. [c.74]

    Изложены общие сведения об истории и динамике развития проблемы защиты металлов от коррозии. Показано технико-экономическое значение защиты металлов от коррозии как одной из важнейших народнохозяйственных проблем. Рассмотрены основные виды коррозионных разрушений и проанализированы их причины. Описаны физико-химическая природа и современная электрохимическая теория коррозионных процессов, их зависимость от внешних условий и свойств металла. СТРИЖЕВСКИЙ И.В. Подземная коррозия и методы защиты. — М. Металлургия, 1986, 6 л. — (Защита металлов от коррозии) [c.208]

    В руководстве даны 33 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов [c.5]

    Так, например, относительно невысокая стоимость разрушенного подземного кабеля не идет ни в какое сравнение с затратами на работы по обнаружению места повреждения, по удалению почвы и по его ремонту. Ущерб, причиняемый коррозией металлов, трудно переоценить. Естественно поэтому, что изучение коррозии и разработка методов защиты металлов от нее представляют несомненный теоретический интерес и имеют большое народнохозяйственное значение. [c.517]


    Смещение потенциала стали в отрицательную сторону от значения собственного стационарного потенциала при наложении внешнего катодного тока определяет защиту металла подземного трубопровода. Когда катодная поляризация (перенапряжение) возникает на металле при прохождении наложенного внешнего тока, растворение или ток коррозии уменьшается, в то время как скорость восстановления увеличивается. На закономерном снижении скорости растворения металлов по мере смещения их электродных потенциалов в отрицательном направлении в области потенциалов более отрицательных, чем стационарный потенциал, основан метод катодной зашиты металлов от коррозии. [c.101]

    Для более надежной защиты металлов от коррозии применяют и комбинированные методы защиты. Так, например, подземные трубопроводы изолируют битумами и, кроме того, для защиты их в местах нарушения механических покрытий применяют катодную защиту. В состав смазок и лаков вводят ингибиторы коррозии, повышающие защитные свойства, защиту ингибиторами в кислых средах иногда сочетают с катодной защитой. При этом резко уменьшается защитный катодный ток. [c.230]

    Наиболее успешным методом борьбы с подземной коррозией свинца (как с покрытием, так и незащищенного) является катодная защита, которая при правильном применении обеспечивает надежную защиту металла на длительное время. Вместе с тем у этого метода есть и свои сложности, которые необходимо всегда иметь в виду. Потенциал поверхности свинца должен постоянно контролироваться, так как слишком отрицательная величина может привести к возрастанию pH, а результирующая щелочная реакция опасна для свинца. В периоды выключения тока защищаемая конструкция будет подвергаться коррозии. Наблюдались, случаи значительной коррозии, вызванной действием едкого натра, образовавшегося при электролизе раствора соли, используемой на улицах, железных дорогах и т. д. [26]. [c.120]

    Самым распространенным методом защиты от грунтовой коррозии является нанесение на поверхность металла защитных покрытий. Защитные покрытия должны быть водонепроницаемыми, химически стойкими, хорошо сцепляющимися с металлом, механически прочными, стабильными при нахождении в грунте, диэлектрическими и т. д. Изоляционные покрытия в подземных условиях должны быть особенно совершенными, так как в противном случае коррозионный процесс будет концентрироваться в несплошностях покрытия и коррозия будет носить местный характер. [c.195]

    Защита металлических конструкций катодной поляризацией получила широкое распространение в условиях подземной и морской коррозии. В настоящее время этот метод защиты металлов применяется также для повышения коррозионной устойчивости заводской аппаратуры. [c.318]

    Для защиты металлических и железобетонных конструкций от подземной коррозии применяют различные методы, включающие воздействие на коррозионную среду, металл, изоляцию металла от среды, катодную, протекторную защиту и замену металлов неметаллическими материалами. [c.119]

    Техника борьбы с коррозией подземных и подводных сооружений на современном этапе располагает не только пассивными средствами (изолирующие покрытия), но и активными, состоящими в прямом воздействии на кинетику электрохимических и коррозионных реакций. Активное изменение скорости электрохимической реакции достигается применением постоянного электрического тока, вызывающего изменение потенциала сооружения и, ак следствие этого, изменение скоростей реакций на электродах. В процессе коррозии и в процессе катодной защиты на поверхности металла идут электрохимические реакции, сопровождающиеся превращением вещества. При применении различных методов защиты добиваются подавления реакции перехода металла в ионное состояние, причем это может сопровождаться либо интенсификацией сопряженных реакций (как в случае катодной защиты) или, наоборот, снижением их скорости (при применении ингибиторов коррозии). [c.167]

    Для предохранения металлов от коррозии применяются комбинированные методы, т. е. методы, сочетающие в себе два или несколько различных способов защиты. Так, для увеличения сохранности подземных трубопроводов, кроме механических средств защиты (обмотка изоляционными материалами, покрытие битумными композициями и т. п.), одновременно применяется катодная защита, предохраняющая металл от коррозии в местах нарушений сплошности покровного изоляционного слоя. [c.483]

    Часто для предохранения металлов от коррозии применяются комбинированные методы, т. е. методы, сочетающие в себе два или несколько различных способов защиты. Так, для увеличения сохранности подземных трубопроводов, кроме механических средств защиты (обмотка изоляционными материалами, покрытие битумными композициями и т. п.), одновременно налагается катодная защита, предохраняющая металл от коррозии в местах нарушений сплошности покровного изоляционного слоя. При покраске металлических изделий в состав красителей вводят, как один из ингредиентов, ингибитор коррозии, обеспечивая тем самым помимо механической также и электрохимическую защиту. Наложение катодной поляризации повышает тормозящий эффект ингибиторов в нейтральных и кислых средах. В первом случае увеличение эффективности защиты связано главным образом с подщелачиванием раствора вблизи поверхности металла, благодаря чему облегчается образование труднорастворимых соединений. В кислых средах повышение эффективности защиты является результатом увеличения адсорбируемости органических катионов при смещении потенциала металла в отрицательную сторону, т. е. увеличении его отрицательного заряда. Некоторые органические вещества, не влияющие на процесс коррозии железа в нейтральных средах, становятся эффективными ингибиторами при наложении катодной поляризации. [c.485]

    Нанесение изолирующего покрытия на поверхность металла позволяет в значительной степени снизить скорость его коррозии. Этот метод защиты — наиболее универсальный, его применяют с давних времен для борьбы с коррозией как подземных сооружений, так и сооружений, находящихся под водой и в атмосфере. Защитные покрытия применяют в агрессивных средах химической промышленности и для защиты поверхности космических кораблей. [c.116]

    Опыт проведения работ по защите магистральных газопроводов показал, что инженер электрохимической защиты должен быть высококвалифицированным специалистом и иметь подготовку по комплексу дисциплин из различных областей техники электротехнике и в особенности постоянному току, теории коррозии металлов в почве и электрохимической защите, металловедению, производству труб и коррозионной устойчивости металлов и сплавов, применению методов электроразведки к вопросам коррозии протяженных подземных сооружений, электрическим измерениям и электроизмерительным приборам, разбираться в вопросах автоматики, телемеханики и телеизмерений защитных устройств, а также знать специфику строительства и эксплуатации защищаемых подземных Сооружений. [c.148]

    Присоединение отсасывающих фидеров обычно производится в сухом грунте, так как во влажной почве возможна утечка электрического тока. Электродренаж заключается в отводе тока от подземных сооружений на отрицательные шины электростанций. Для защиты от блуждающих токов применяют также и изолирующие битумные покрытия, а для кабеля — джутовую обмотку, пропитанную битумными составами, но в дефектных местах покрытий блуждающие токи проникают к металлу. Кроме указанных методов защиты, для борьбы с коррозией блуждающими токами применяют катодную защиту (см. главу ХУП). [c.76]

    Электрохимическая защита. Этот метод защиты основан на торможении анодных или катодных реакций коррозионного процесса. Электрохимическая защита осуществляется присоединением к защищаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока. Наиболее применима электрохимическая защита в коррозионных средах с хорошей ионной электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.238]

    Разработка эффективных способов защиты металлов от подземной коррозии невозможна без развития теории электрохимической коррозии, изучения механизма разрушения защитных покрытий и дальнейшего совершенствования методов электрохимической защиты применительно к подземным условиям. В первую очередь здесь будет продолжено изучение закономерностей электрохимических процессов на металлах в капиллярно-пористых коллоидных электролитах, к которым в общем случае [c.582]

    Средах, на основе справочного материала был правильным, конструктор или проектировщик должен знать основы теории коррозии и защиты металлов. Поэтому не случайно, что Справочник по коррозии болгарских авторов X. Рачева и С. Стефановой открывается разделом Коррозия металлов , в котором в доступной форме изложены основные положения теории коррозии и защиты металлов. Рассмотрение теоретических положений химической и электрохимической коррозии металлов, а также отдельных видов коррозии (атмосферной, подземной и др.) завершается изложением методов защиты. Большое внимание уделено ингибиторам коррозии, механизму их защитного действия и областям применения. В конце раздела дано описание коррозионного поведения основных металлов в наиболее характерных коррозионных средах. [c.6]

    Наиболее характерны.м катодным процессом в случае подзе.мной коррозии является кислородная деполяризация, хотя в почвах, имеющих сильнокислую реакцию (pH ниже 3), может происходить и водородная деполяризация. Подземные трубопроводы могут корродировать также за счет работы макрогальванических пар, возникающих из-за различной аэрации или неодинакового состава почвы на соседних участках. Грунтовая коррозия очень опасна, так как она часто проявляется в виде глубоких раковин и точечных изъязвлений. Защита от почвенной коррозии осуществляется путем изоляции металлов нефтебитумными композициями, а также липкой полиэтиленовой или полихлорвиниловой лентой в сочетании с электрохимическими. методами защиты. [c.32]

    Магний довольно стоек во влажном воздухе и в воде за счет образование на его поверхности малорастворимой пленки М5(0Н)г. Й безводной среде, особенно при соприкосновении с окислителями при высокой температуре, магний — очень активный металл. Это свойство широко используется в химической практике для восстановления, в первую очередь, титана, а также бора, кремния, хрома, циркония и других металлов методами магнийтермии. На этом же свойстве основано применение магния в кино- и фотоделе и др. Некоторое применение магний находит и в производстве химических источников тока в качестве анодного материала, а также при проведении магнийоргани-ческого синтеза. Протекторы, изготовленные из магниевых сплавов, широко применяются для защиты от коррозии в морской воде судов и эксплуатируемых в этих водах стальных конструкций, а также от подземной коррозии — газопроводов, нефтепроводов. [c.481]


Смотреть страницы где упоминается термин Методы защиты металлов от подземной коррозии: [c.486]    [c.195]    [c.458]    [c.460]    [c.196]    [c.481]    [c.54]    [c.38]    [c.45]    [c.44]    [c.45]    [c.371]   
Смотреть главы в:

Коррозия химической аппаратуры -> Методы защиты металлов от подземной коррозии

Коррозия химической аппаратуры и коррозионностойкие материалы Изд 4 -> Методы защиты металлов от подземной коррозии




ПОИСК





Смотрите так же термины и статьи:

Защита металлов от коррозии

Защита от коррозии

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов методы защиты

Коррозия. Методы защиты металла от коррозии

Метод защиты от коррозии

Методы защиты

Методы защиты от подземной коррозии

Подземная коррозия

Подземная коррозия металлов

Подземная коррозия металлов защита



© 2025 chem21.info Реклама на сайте