Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы испытание на коррозионную стойкость

Рис. 363. Внелабораторные испытания коррозионной стойкости металлов в грунтах Рис. 363. Внелабораторные испытания коррозионной стойкости металлов в грунтах

    По данным Американского общества по сварке металлов и комитета по металлизации, коррозионная стойкость алюминированной стали в 2,5—3 раза превыщает коррозионную стойкость оцинкованной стали в морской воде. Испытания коррозионной стойкости алюминированной стали в зоне периодического смачивания также подтвердили высокую коррозионную стойкость алюминиевых покрытий. [c.199]

    Наиболее простым и доступным методом определения коррозионной стойкости металлов в электролитах является испытание в открытом сосуде (рис. 327), которое позволяет использовать большинство показателей коррозии. Образцы (обычно три в каждом опыте) подвешивают на стеклянном крючке или капроновой нити и испытывают при полном (рис. 327, а), частичном (рис, 327, б) или переменном (рис, 327, в) погружении в неподвижный (рис. 327, а—в) или перемешиваемый (рис, 327, г) коррозионный раствор, через который можно пропускать воздух, кислород, азот или другой газ (рис. 327, д). Более совершенно проведение испытания в оборудованном термостате (рис, 327, е). [c.443]

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Химические коррозионные испытания иначе называют испытаниями при полном погружении образцов в коррозионную среду. В отличие от других специфических методов коррозионных испытаний (например, на щелевую межкристаллитную коррозию и т.д.) химические коррозионные испытания не ставят своей целью ускоренную проверку восприимчивости металла какому-то отдельно взятому виду коррозионных разрушений. Как правило, стендовые химические коррозионные испытания проводятся для определения общей коррозионной стойкости металла в данной среде. При таких коррозионных испытаниях легко контролируются основные факторы, влияющие на результаты определения стойкости металла. [c.160]

    В лабораторной практике контроль качества покрытий складывается в основном из определения толщины и пористости покрытий, а также из испытаний их механических свойств (твердости, пластичности, износоустойчивости, прочности сцепления покрытия с основным металлом) и коррозионной стойкости. [c.40]

    ИСПЫТАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ МЕТАЛЛОВ [c.105]

    Метод испытания коррозионной стойкости нержавеющих сталей, работающих в условиях нагрева и действия влаги. Батраков В. П., Гурвич Л. Я-, Смирнова Ю. А., Филимонова Л. Л. Сб. Новые методы исследования коррозии металлов . М., изд-во Наука , 1973, 179—182. [c.219]

    Испытания коррозионной стойкости металлов проведены также в средах разложения сернокислотного экстракта (стадия разложения изобутилсерной кислоты). [c.83]

    Т о м а ш о в Н. Д. и др. Полевые испытания коррозионной стойкости сталей в грунтах. Сб. Исследования по коррозии металлов , вып. 6. М., изд-во АН СССР, 1960. [c.115]

    Было установлено, что в реальных условиях соли могут или осаждаться, или образовываться на металле во время реакций газа с металлом. В соответствии с этим на металле при высоких температурах процесса могут образовываться расплавы солей. Следовательно, лабораторные испытания коррозионной стойкости в расплавах солей дают подходящие результаты, близкие к тем, которые получаются в реальных газовых средах при высоких температурах. [c.611]

    Одним из основных методов испытания металла на коррозионную стойкость является весовой метод. При испытании этим методом определяют разность веса образца металла до и после коррозии. Результаты испытаний относят к единице поверхности металла м , см ) и единице времени (час, сутки, год и т. д.). Таким образом, коррозионные потери могут быть выражены в г см ч г м день и т. д. Однако весовой метод не учитывает удельного веса металла. В результате этого при одной и той же потере веса для разных металлов уменьшение сечения металла будет различным. [c.14]

    Данные рис. 2 представляют результаты испытаний коррозионной стойкости наиболее часто применяемых металлов в конденсате, содержащем кислород и двуокись углерода [11]. Результаты, приведенные в этой диаграмме для медных сплавов, [c.560]

    Одно из преимуществ применения отрезков тяжелых тавровых балок или уголков в качестве образцов заключается в том, что они не требуют анкерного закрепления. Изоляция испытуемых образцов друг от друга и от металлической рамы обычно необходима, особенно в случаях высокой влажности или соленой воды. Легкий способ получить достаточную изоляцию для большинства условий испытания состоит в прикреплении образцов к доскам таким образом, чтобы образцы и их деревянные подкладки укреплялись в раме как одно целое. Конструкции рам изображены на рис. 1 и 2, стр. 1107. Во всех испытаниях в агрессивных условиях, включая воду или другие жидкие среды, должна быть обеспечена полная изоляция испытуемого образца способами, указанными в стандартах для испытания металлов на коррозионную стойкость [20]. [c.1143]

    Л. В. Елин. Э. Ш. Рот, Поляризационный метод ускоренных испытаний коррозионной стойкости металлов в морской воде, Зав. лаб. № 7, стр. 811 (1949). [c.1220]

    При испытании металлов на коррозионную стойкость следует выяснить, идет ли процесс коррозии с постоянной скоростью, замедляется или ускоряется с течением времени, т. е. следует изучать изменение скорости коррозии во времени. Для выбора коррозионно-стойкого материала обычно в качестве эталона часто принимают наиболее стойкий в данных условиях материал и по сравнению с ним устанавливают скорость коррозии остальных металлов. Продолжительность испытания должна быть по возможности большой, чтобы можно было сделать по крайней мере не менее трех измерений. [c.326]

    При испытании в атмосферных условиях [4] и в камере с разбрызгиванием раствора хлористого натрия[5]или другого коррозионного агента пористость определяется по числу коррозионных точек, появившихся на поверхности. Поскольку эти методы являются общими для испытания коррозионной стойкости металлов и широко освещены в литературе [6], то здесь они подробно не будут рассматриваться. При погружении испытуемого образца в раствор кислоты [7] или хлористого натрия (8] пористость может характеризоваться числом пузырьков водорода как продукта реакции металла подкладки с окружающей средой. [c.353]


    При этих испытаниях коррозионная стойкость металла определяется непосредственно в рабочих условиях. Следовательно, этот вид испытаний позволяет наиболее точно определить поведение металла, сравнить отдельные металлы ц сплавы и различные виды [c.22]

    Коррозионную стойкость металлов и сплавов обычно проверяют в лабораторных условиях. При выборе конструкционного материала пользуются справочными данными, основывающимися как на результатах лабораторных испытаний, так и на практических наблюдениях. [c.21]

    Дефекты основного металла и сварных соединений приводят к образованию некогерентных границ зерен, коррозионно нестойких пленок, создают концентрацию макро- и микронапряжений, повышают термодинамическую неустойчивость дефектных участков поверхности и интенсифицируют их наводороживание и электрохимическое растворение. Поэтому для повышения надежности оборудования и коммуникаций, контактирующих с сероводородсодержащими средами, наряду с тщательным входным контролем соответствия материалов конструкций техническим условиям на их поставку и неразрушающим контролем монтажных сварных соединений, эффективными являются предпусковые гидроиспытания металлоконструкций давлением, создающим напряжения до 95% от минимального нормативного значения предела текучести металла [33, 34]. В ходе этих испытаний разрушаются участки основного металла и сварных соединений, содержащие потенциально опасные дефекты. Вокруг оставшихся неопасных дефектов образуются зоны остаточного сжатия, повышающего коррозионную стойкость сварных соединений. Кроме того, после гидравлических испытаний в 2-3 раза снижаются максимальные остаточные напряжения в зоне сварных соединений труб за счет пластического удлинения растянутых областей металла. Одновременно снижаются наиболее высокие монтажные напряжения в трубопроводах. Там, где по техническим причинам проведение гидроиспытаний не представляется возможным, для выявления недопустимых дефектов необходимо применять 100%-ный радиографический контроль сварных соединений и его 100%-ное дублирование ультразвуковым методом [25, 35]. [c.67]

    Лабораторные исследования проводят, как правило, на образцах небольшого размера простой формы в модельных средах. Они являются первой стадией оценки коррозионной стойкости металлов и сплавов, проводятся быстро и достаточно точно оцениваются количественно. При этом для раскрытия механизма и природы разрушения могут быть использованы несколько независимых друг от друга методов испытаний. [c.5]

    Сопротивление таких кривых, полученных при испытании металла на воздухе и в коррозионной среде (например, воде, паре), дает информацию по влиянию Коррозионной среды на предел выносливости. Однако не всегда такое сопротивление может быть успешно использовано для оценки стойкости металла к коррозионной усталости. Это объясняется тем, что для некоторых металлов определяющую роль в усталостном разрушении играет скорость распределения трещины, а не возникновение первоначального дефекта, из которого она начинает свой рост. Целесообразно в этой связи исследовать развитие усталостной трещины на образцах с предварительно нанесенным надрезом, а данные о влиянии коррозионной усталости представлять в виде зависимостей роста усталостной трещины от интенсивности напряжений. [c.184]

    Рациональным выбором режимов кислотно-химических промывок, исключающих чрезмерно агрессивное воздействие кислот и других моющих средств на участки с ослабленной коррозионной стойкостью металла, несомненно, удалось бы избежать отмеченных неприятностей в эксплуатации оборудования. Подобная задача может быть сравнительно легко разрешена на основе применения так называемого струйно-зонного метода коррозионных испытаний и использования его для проверки агрессивности среды не только по отношению к целому металлу, но и, что особенно важно, по отношению к участ- [c.123]

    В табл. 20.1 и 20.2 представлены результаты испытаний коррозионной стойкости металлов и сплавов в условиях альдольной конденсации масляного альдегида и концентрирования водных растворов этриола, которые проводились при температурах, не превышающих 60 °С. Скорость коррозии углеродистых сталей и сталей типа 1X13, 2X13 составляла при этом 0,1—0,2 мм/год, т. е. эти стали принадлежат к группе относительно стойких материалов. Коррозионное разрушение сталей на указанных стадиях процесса определяется присутствием серной кислоты и масляного альдегида, в котором при длительном хранении на воздухе образуется масляная кислота. Данные по коррозионной стойкости материалов в масляной кислоте приведены в гл. 15 и 19. [c.562]

    Предлагаемый струйно-зонный метод коррозионных испытаний металла может быть использован не только для отработки режимов кислотных промывок, но и для решения исследовательских и практических задач по проверке коррозионной стойкости черных, цветных металлов и их сплавов и разработке средств противокоррозионной защиты в кислых и даже нейтральных и щелочных средах. [c.127]

    Существуют специальные методы испытания для определения стойкости металла к ударной коррозии в условиях локального нагрева (коррозии в месте нагрева), однако в определении коррозионной стойкости котельной стали и материалов конденсаторных трубок температурный фактор обычно не учитывается. [c.180]

    Скорость МХПМ тем выше, чем больше параметр (Зо (рис. 3.14). Более прочная сталь (16ГС) чувствительнее к изменению параметра ро, в особенности, при испытаниях образцов в растворе МЭА + СО2. Влияние параметра Ро и исходной прочности металла на коррозионную стойкость образцов необходимо связывать с остаточными напряжениями и деформациями. Сплошные линии на этих рисунках отвечают формуле (3.12). Отмечается приемлемая для коррозионных испытаний сходимость экспериментальных и теоретических результатов. [c.169]

    Изложены результаты многолетних испытаний коррозионной стойкости различных сплавов и средств защиты во влажных субтропиках. Приведены данные о коррознон-йОм поведении нержавеющих сталей (хромомарганцевых) в атмосфере влажного субтропического климата и в морской воде. Рассмотрены кинетика и характер коррозионного разрушения металлов, изделий из них, защитных покрытий, а также полимерных материалов. Даны рекомендации по выбору конструкционных материалов и средств Их защиты во влажных тропиках и субтропиках. [c.2]

    Обзор более 70 публикаций, посвященных либо коррозионным испытаниям алюминия в морской воде, либо практическому опыту использования алюминия в опреснительных установках, дан в работе Тейлора [247]. Имеющиеся данные показывают, что наиболее высокой стойкостью в морской воде обладают алюминиевые сплавы, содержащие 1—3% Mg (например, сплав 5052). Важно избегать образования гальванических пар алюминия со сталью или сплавами на основе меди. Описаны методы уменьшения питтинговой коррозии с помощью входных фильтров и ловушек, задерживающих ионы тяжелых металлов. Прекрасная коррозионная стойкость, низкая стоимость и хорошая обрабатываемость делают алюминиевые сплавы наиболее удобным материалом для изготовления оборудования опреснительных установок. [c.203]

    Для получения наиболее достоверных данных о влиянии этих элементов был применен метод последовательной дошихтовки сплава, когда плавки №№ 4-10 бьши получены путем дополнительного легирования тем или иным химическим элементом плавки 1. Испытания коррозионной стойкости опытных плавок проводили по методу АМУ (ГОСТ 6032-84) после провоцирующих нагревов, имитирующих высокотемпературные технологические разогревы металла оборудования в диапазоне от 723 до 1023 К во временном интервале от 0,5 до 100 часов. [c.81]

    В целях повышения механической прочности деталей арматуры, изготовленных из стали неаустенитных марок и работающих при давлениях 140— 240 ат температурах 565—580° С, рекомендуется применять химическое никелирование. Согласно материалам ВАЗ, ЦНИИТМАШ и другим литературным данным детали, прошедшие химическое никелирование (после термической обработки), обладают высокой твердостью (сравнимой с твердостью износостойкого хрома), надежным сцеплением с основным металлом, высокой коррозионной стойкостью в условиях высокотемпературной газовой коррозии в атмофере воздуха и перегретого пара (по данным исследований за 1 ООО ч испытаний при температуре 650° С коррозионная стойкость образцов, покрытых никелем, по сравнению со сталью в паровой среде увеличивается в 36 раз, а в воздушной — в 15 раз), более высокой стойкостью к задиранию, чем износостойкий хром (при сравнительных испытаниях в паровой среде при температуре 580°С оказалось, что удельное давление 600—650 кГ1см у химически никелированных образцов вызывает удельный задир 8—4 мк/м, а у хромированных образцов такой удельный зазор вызывает удельное давление 444 кПсм ), высокой износостойкостью при работе в паре. На ВАЗ химическому никелированию подвергают шпинделя вентилей Dy 10 20 и 50, изготовленные из стали марок ЭИ-723 и 35. [c.311]

    Процессы воздействия агрессивных сред на неметаллические материалы изучены слабо, стандартные методы испытаний еще не разработаны. Значительно полнее изучена коррозия металлов предложен ряд методов испытания коррозионной стойкости металлов и покрытий, защищающих их от коррозии. Коррозия металлов — это разрушение их вследствие химического или электрохимического взаимодействия с агрессивной средой. В качестве примеров коррозии можно привести всем известное ржавление железа во влажном воздухе, т. е. окисление его с образованием окислов РсаОз и Рез04 или гидроокисей Ре(ОН)д и Ре(0Н)2. Известна также способность многих металлов подвергаться быстрой коррозии в агрессивных средах, особенно в кислотах, которые растворяют окислы металлов и металлы. По мнению некоторых исследователей, потери железа от коррозии составляют в среднем около 10% его ежегодной выплавки, поэтому борьба с коррозией — одна из важнейших народнохозяйственных задач для химической промышлеппости борьба с коррозией является решающим фактором в снижении себестоимости и улучшении качества продукции. В отдельных случаях создание коррозионно-стойкого материала и его рациональное применение решает вопрос о возможности производства данного продукта. [c.234]

    По данным лабораторных испытаний [20], карбонильная коррозия всех испытанных металлов в газовой среде с 30% СО при 150—275 С и 38—40 МПа не превышает 0,8—1,02 г/(м -ч). С увеличением концентрации окиси углерода до 40% скорость, коррозии возрастает, особенно резко для углеродистых сталей и их сварных соединений. При 60% СО максимальное развитие к-арбонильной коррозии сдвигается в область 200—225 С. Заметна разница между каррозион-ной стойкостью углеродистых и легированных сталей. Невысокую коррозионную стойкость показали стали 20ХЗВМФ, ЗОХМА и их сварные соединения. Коррозионная стойкость материалов в производственных условиях одинакова для сиарных соединений и основного металла и по значениям близка к лабораторным данным. [c.235]

    Уже через год после начала эксплуатации были проведены промысловые испытания ингибитора Секангаз-9Б, разработанного ВНИИГАЗом и ИФХ АН СССР специально для зашиты оборудования от коррозии в сероводородсодержащих средах. Испытания проводили на нескольких скважинах. Объем опытной партии ингибитора составлял 20 т. Была установлена высокая эффективность ингибитора при постоянной подаче. Реагент не образовывал эмульсии. Стендовые испытания показали, что пленка ингибитора Секангаз-9Б, нанесенная на поверхность металла, не обладает стойкостью к воздействию коррозионного раствора, насыщенного сырым отсепарированным газом. Поэтому данный ингибитор не рекомендуется использовать при проведении периодических обработок. [c.261]

    В связи с неравномерньш характером коррозии сварного соединения показатель изменения массы (весовой показатель коррозии) не характеризует его коррозионную стойкость). Удобным является метод измерения коррозионного разрушения, который позволяет определить зоны максимальной коррозии и истинную глубину разрушения металла. Графическое изображение профиля образца после коррозионных испытаний называется профилограммой. [c.45]

    Испытания прокорроднровавщих труб показали их пониженную механическую прочность. Травлением дефектных труб в горячем 10%-ном растворе соляной кислоты обнаружена слабая коррозионная стойкость металла, расположенного под слоем щлама. Коррозия под действием оксидов железа труб способна протекать и при наличии, и при отсутствии избыточной щелочности котловой воды. [c.30]


Смотреть страницы где упоминается термин Металлы испытание на коррозионную стойкость: [c.507]    [c.612]    [c.30]    [c.198]    [c.55]    [c.134]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Испытание металлов

Испытания коррозионной стойкости металлов при одновременном действии напряжений

Испытания коррозионные

Испытания металлов на коррозионную

Испытания металлов на коррозионную стойкость, метод

Коррозионная стойкость

Металлы коррозионное металлов

СОДЕРЖАНИИ Часть первая Методы коррозионных испытаний и оценки химической стойкости металлов Общие сведения

Электролиты для испытаний металлов на коррозионную стойкость



© 2025 chem21.info Реклама на сайте