Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородсодержащие системы

Рис. 1. Зависимость суммарного расхода водорода от концентрации водорода в циркуляционном газе на входе в реактор при различном содержании водорода в свешем водородсодержащем газо (давление в системе 4,0 МПа, кратность циркуляции при гидроочисткв дизельного топлива 200, керосина 300). Рис. 1. Зависимость <a href="/info/41257">суммарного расхода</a> водорода от <a href="/info/14574">концентрации водорода</a> в <a href="/info/743861">циркуляционном газе</a> на входе в реактор при <a href="/info/440667">различном содержании водорода</a> в свешем <a href="/info/440684">водородсодержащем газо</a> (давление в системе 4,0 МПа, <a href="/info/26149">кратность циркуляции</a> при гидроочисткв <a href="/info/78734">дизельного топлива</a> 200, керосина 300).

    Каталитический риформинг бензиновых фракций на платиновом катализаторе (платформинг) — ведущий технический процесс для получения высокооктановых бензинов и ароматических углеводородов. Сырьем являются обычно фракции прямогонных бензинов, содержащие парафиновые, нафтеновые и ароматические углеводороды и небольшое количество олефинов. В сырье присутствуют также, как микропримеси, различные элементоорганические соединения и вода. Процесс проводится при температурах около 500 °С и давлениях 1—4 МПа с разбавлением сырья водородсодержащим газом до мольного соотношения водород/сырье , равного 5—8. Обычно его осуществляют в системе из трех последовательно соединенных адиабатических реакторов с неподвижными слоями катализатора. Между реакторами происходит подогрев продукта. [c.336]

    В водородсодержащем газе каталитического риформинга примеси углеводородов составляют от 60 до 80% (масс.) (см. табл. 3). При гидроочистке также образуются углеводородные газы и сероводород (газы реакции). Количество углеводородных газов, поступающих со свежим водородом, и газов реакции в отдельных случаях превышает возможности гидрогенизата растворить их в себе и таким образом удалить из системы циркуляции газа. В этом случае происходит накопление углеводородных газов в системе циркуляции водородсодержащего газа, что приводит к падению парциального давления водорода. [c.20]

    Расход водорода на растворение и потери его через неплотности системы. В схему гидроочистки моторных топлив после реактора и системы теплообмена продуктов реакции с сырьем включен сепаратор для разделения циркулирующего водородсодержащего газа и гидрогенизата. Давление сепарации зависит от перепада давления в системе циркуляции водородсодержащего газа, температура — от выбранного варианта схемы теплообмена 40—50°С при холодной сепарации гидрогенизата и 160—230 °С при горячей. [c.20]

    Нормальная эксплуатация компрессора зависит также от плотности перекачиваемых газов. В установках каталитического риформинга плотность циркуляционного водородсодержащего газа может меняться в зависимости от качества перерабатываемого сырья и режимных показателей процесса. Характеристика компрессора в зависимости от плотности газа при неизменном давлении на стороне всасывания изменяется. При определенной заданной производительности компрессора, давлении всасывания и частоте вращения вала двигателя при различных плотностях аза давление, развиваемое компрессором, различно соответственно изменяется и перепад давления на компрессоре. Прн увеличении плотности газа этот перепад увеличивается, а прн уменьшении ее снижается. Таким образом, при отклонении плотности перекачиваемого газа от номинального расчетного значения может возникнуть две ситуации. Если перепад давления, развиваемый компрессором, больше гидравлического сопротивления системы, то компрессор находится в области устойчивой работы. [c.184]


    В некоторых водородсодержащих системах, например NeH+, FH+, электронное облако в основном сгруппировано вокруг ядер А и межъядерная стационарная точка отсутствует. Эти системы лучше описываются как один фрагмент, т. е. приближаются к модели объединенного атома. Подобное поведение найдено только в тех случаях, когда один из возможных фрагментов не имеет остовных электронов, например атом водорода. [c.51]

    Значимость четырех вышеприведенных критериев неодинакова. Наиболее важным является первый критерий, и почти все системы определения взаимозаменяемости включают тот или ной способ измерения потока тепловой энергии. Однако более подробно эта тема будет обсуждаться ниже. Второй критерий, определяющий размер и форму факела при сжигании предварительно смешанного газа, зависит от скорости распространения пламени, причем эта скорость совершенно одинакова для разных парафиновых углеводородных газов, метана, этана и т. д., но имеет различные значения для углеводородов и водородсодержащих газов. И, наконец, критерии образования промежуточных продуктов реакций горения и сажи имеют смысл, когда топливные газы содержат ненасыщенные промежуточные соединения критерий сажеобразования важен и тогда, когда в газовом топливе имеются ненасыщенные и высококипящие углеводороды или соединения ароматического ряда. Во всех остальных случаях углистые отложения и загрязняющие вещества не превышают норм, допустимых для природного газа и используемого топочного оборудования. Вследствие этого учет двух последних критериев взаимозаменяемости ограничен районами, пользовавшимися в прошлом синтетическим или полученным из угля газовым топливом. [c.44]

    Характерной особенностью установки является наличие раздельной системы циркуляции водородсодержащего газа в обоих блоках. Это дает возможность каскадного использования его в другом блоке, перерабатывающем сырье, для которого не требуется высокая концентрация водорода в циркуляционном газе. [c.57]

    Колебания температуры смеси на выходе из продуктового холодильника должны быть минимальными. Повышение температуры в сепараторе, где выделяется циркулирующий водородсодержащий газ, приведет к резкому увеличению плотности водородсодержащего газа и перегрузке компрессора. В сепараторе высокого давления необходимо поддерживать температуру ниже 60 °С, так как при более высоких температурах возможен унос жидких нефтепродуктов с циркулирующим водородсодержащим газом, которые, скапливаясь в системе раствора МЭА, ухудшают условия очистки газов. [c.125]

    Система циркуляционного тракта установки гидроочистки должна быть тщательно освобождена от нефтепродуктов. Для гидрирования и десорбции части продуктов, адсорбированных на катализаторе, рекомендуется в течение 5—8 ч осуществлять горячую циркуляцию водородсодержащего газа при рабочих условиях процесса. Окончание циркуляции определяется по постоянству концентрации углеводородного состава газа на входе и выходе из реактора. [c.127]

    Увеличение отношения Н С и соответственно повышение крат нести циркуляции водородсодержащего газа влияют на фазово состояние газо-сырьевой смеси на входе в реактор. При одних и тех ж( температуре и давлении снижение кратности циркуляции способ ствует сдвигу равновесия в сторону образования жидкой фазы и наоборот, повышение кратности циркуляции способствует образованию паровой углеводородной фазы. Аналогичный эффект можно получить, изменяя давление в системе при постоянных кратности циркуляции и температуре. Снижение давления сдвигает равновесие в сторону образования паров, повышение — жидкости. Учитывая, что наиболее интенсивно процесс гидроочпстки идет в паровой фазе, при снижении кратности циркуляции также целесообразно снижать общее давление в системе. [c.48]

    Промышленная установка гидрокрекинга (рис. У-З) включает нагревательно-реакционную секцию (печи, реакторы), системы очистки и циркуляции водородсодержащего газа (газосепаратор высокого давления, колонны осушки и очистки, водородный компрессор) и блок газо- и погоноразделения (сепаратор низкого давления, колонны ректификации гидрогенизата). [c.49]

    Несколько отличается от описанной установки Л-35/11-600 (см. рис. 13) система разделения газа и конденсата. После охлаждения в теплообменниках и холодильниках смесь катализата и газа разделяется в газосепараторе 4 низкого давления (I МПа). Затем газ компримируется компрессором 5 до 1,5 МПа и после смешения с катализатом из сепаратора 4 подается в газосепаратор 7 высокого давления. Из газосепаратора водородсодержащий газ распределяется следующим образом основная часть его подается на циркуляцию, часть — на гидроочистку исходного сырья (блок гидроочистки сырья на схеме не показан), а избыток — выводится с установки. Катализат освобождается от углеводородного газа в стабилизационной колонне 8. [c.47]


    В системе циркуляции водородсодержащего газа общий перепад давления (после и до компрессора 10) составляет 1,19 МПа, что для данных установок не считается чрезмерным. Однако расход энергии на сжатие компрессором циркуляционного газа увеличивается с ростом гидравлического сопротивления системы и при проектировании величина этого сопротивления должна быть найдена достаточно точно. [c.53]

    Набор оборудования установки Л-35-11-600 позволяет организовать отдельные системы циркуляции водородсодержащего газа для процессов [c.146]

    Сушка и восстановление катализаторов. Сушка и восстановление алюмокобальтмолибденового или алюмоникельмолибденового катализатора и его восстановление осуществляется водородсодержащим газом. Содержание кислорода должно быть не более 0,5 % (об.). Этому обычно предшествует операция по промывке системы от азота, которая производится водородсодержащим газом до тех пор, пока содержание водорода в системе не достигнет 65—70 % (об.). [c.187]

    Блок изомеризации пентан-гексановая фракция подается на смешение с циркулирующим водородсодержащим газом, нагревается в теплообменнике 30 и печи 20 и поступает в реактор 21, где на катализаторе ИП-62 осуществляется процесс изомеризации н-пентана и н-гексана в углеводороды изостроения. Газопродуктовая смесь после выхода из реактора охлаждается в теплообменнике 30, воздушном 32 и водяном 33 холодильниках и поступает в сепаратор 22 на разделение. Часть водородсодержащего газа выводится из системы, а в систему добавляется свежий водородсодержащий газ, который предварительно подвергается осушке в адсорбере на молекулярных ситах и поступает на прием компрессора 23 для обеспечения циркуляции водородсодержащего газа и в узел смешения с сырьем. [c.156]

    Особенностью схемы отечественных установок риформинга для производства ароматических углеводородов (установки Л-35-6, Л-35-8, Л-35-12 и Л-35-13) является наличие дополнительного реактора для гидрирования непредельных углеводородов, находящихся в катализате. Выходящие из реактора Р-4 продукты реакции вместе с циркулирующим водородсодержащим газом охлаждаются, а затем поступают в дополнительный реактор, загруженный алюмоплатиновым катализатором АП-10 или АЛ-15, содержащим около 0,1% платины (на рис. 4 дополнительный реактор и система теплообменников не показаны). Такая схема установки каталитического риформинга позволяет исключить из блоков экстракции стадию очистки ароматических углеводородов от непредельных. [c.23]

    Для иллюстрации в табл. 20 даны коэффициенты математического описания этой системы, а в табл. 21 сопоставлены рассчитываемые и экспериментальные величины их совпадение можно считать удовлетворительным. Коэффициенты подобраны по результатам 12 режимов, которые были реализованы на пилотной и промышленной установках в широкой области изменения условий процесса температуры от 450 до 520 °С, объемной скорости от 1 до 2 ч , кратности циркуляции водородсодержащего газа от 600 до 1800 м /м . Следовательно, математическое описание позволяет решать задачи оптимального проектирования и управления. [c.148]

    Концентрация водорода в системе повышается за счет растворения углеводородных газов в жидком гидрогенизате н увеличения концентрации Нз в водородсодержащем газе, поступающем с установок риформинга. Для поддержания по- [c.146]

    Газы пиролиза необходимо осушать до точки росы более низкой, чем минимальная температура, которая может быть в системах транспортирования или переработки газа. Наличие влаги в циркулирующем водородсодержащем газе риформинга приводит к дезактивации катализатора за счет вымывания галогенов, поэтому содержание влаги в этом газе поддерживают не более 0,001—0,0015% (об.). [c.286]

    Глубина очистки растет с увеличением парциального давления, которое зависит от общего давления в системе, расхода подаваемого водородсодержащего газа и концентрации водорода в нем. Блоки предварительной гидроочистки рассчитаны на переработку бензиновых фракций при давлении до 4,0 МПа при следующих параметрах процесса 1 [c.31]

    При прорыве фланцевого соединения, работающего под давлением, необходимо как можно быстрее систему освободить от сырья и водородсодержащего газа. При этом прекращается подача сырья в тройнике смешения, останавливается циркуляционный компрессор, прекращается подача топлива в печи реакторного блока, прекращается подача хлорорганических соединений, из системы высокого давления плавно (во избежание гидравлических ударов) сбрасывается давление, вспомогательные блоки переводятся на горячую циркуляцию, после охлаждения системы производится устранение утечек нефтепродуктов и ремонт арматуры. [c.201]

    Резкое увеличение количе- Сократить или прекратить ства сбрасываемого из - отдув водородсодержащего системы водородсодержа- газа при наличии избытка щего газа ВСГ в заводской системе [c.84]

    Технологические схемы блоков разделения гидрогенизатов гидроочистки и катализатов риформинга с получением высокооктановых бензинов зависят от сырья и давления реакции. На алю-мокобальтмолибденовых и платиновых катализаторах (давление реакции 4 МПа) газы из гидрогенизата и катализата выделяются обычно двухступенчатой холодной сепарацией. На I ступени выделяется водородсодержащий газ при давлении реакции и температуре около 40°С ( Б сепараторе высокого давления) на IIступени при этой же температуре и давлении 0,5—0,6 МПа отделяются растворенные углеводородные газы (в сепараторе низкого давления) (рис. 1У-21). В системе холодной двухступенчатой сепарации получается водородсодержащий газ (до 60—75% об. Нг) при сравнительно небольших потерях водорода с углеводородным газом. [c.231]

    Расход водорода на отдув. В зависимости от требуемой степени очистки сырья определяется оптимальное парциальное давление водорода в.процессах гидроочистки. Расход водорода на отдув появляется в связи с тем, что для поддержания оптимальНогЬ парциального давления приходится непрерывно выводить (отдувать) из системы небольшой поток циркуляционного водородсодержащего газа и заменять его свежим водородом. [c.19]

    Эксплуатация установок гидроочистки подтвердила эффектив-юсть применения промышленных АКМ и АНМ катализаторов, I при переработке малосернистого сырья выявила возможность зна-штельного смягчения режима гидроочистки. Это касается Изменения таких параметров, как общее давление в системе, объемная скорость юдачи сырья, кратность циркуляции водородсодержащего газа I длительность безрегенерационного периода. При этом обеспечивается требуемое качество целевого продукта. В табл. 21 приводятся 1ромышленные данные по основным режимам работы установок гидроочистки старого типа и общему расходу водорода в процессе гидро-эчистки прямогонных дизельных фракций. Общий расход водорода [c.135]

    В секции изомеризации принята двухреакторная схема со ступенчатым снижением температуры от первого реактора ко второму. Повышенная температура в первом по ходу сырья реакторе 2 обеспечивает более полное разложение чегы-реххлористого углерода и протекание изомеризации с образованием изопентана и монозамещенных гексанов, во втором реакторе 3 происходит изомеризация до вы-сокоразветвленных гексанов, обладающих высокими октановыми характеристиками. Принятый способ низкотемпературной изомеризации определяет включение в схему установки системы глубокой осушки и очистки от сероводорода водородсодержащего газа, поступающего в систему изомеризации, а также узлов хлорирования катализатора и улавливания продуктов хлорирования. [c.143]

    После восстановления катализатора проводят цикл риформинга, состоящий из четырех последовательных непрерывных опытов при температурах 460, 480, 490 и 500 или 505° С. Давление в системе выдерживают 40 кГ см , объемную скорость подачи сырья — 2 а кратность циркуляции водородсодержащего газа — 1500 нл ч на 1 л сырья. Продолжительность опыта при каждой температуре составляет 24 ч. В качестве стандартного сырья используют бензиновую фракцию 85— 180° С прямогогпюго бензина ромашкинской или туйма-зинской девонской нефтей, предварительно подвергнутую гидроочистке на алюмокобальтмолибденовом катализаторе. [c.174]

    При выполнении конкретных расчетов по уравнениям ( .13) или ( .15) нужно иметь в виду, что О и Ср характеризуют смесь углеводородов и водородсодержащего газа, если последний циркулирует в системе. Пусть Со и Сро — массовый поток и теплоемкость углеводородов соответственно, а—массовое от-иощение водород углеводороды, тогда [c.163]

    Блок осушки циркулирующего водородсодержащего газа предназначен для обеспечения необходимой влажности в системе реакторного блока. Блок осушки состоит из печи нагрева инертного газа П-2, колонн К-1,2, загруженных влагопоглащающими цеолитами типа NaX. [c.37]

    Сушка и восстановление катализаторов риформинга производится также водородсодержащим газом. Перед этой операщ1ей система риформиига должна быть продута или опрессована азотом или инертным газом. При этом к техническому азоту или инертному газу предъявляются требования по содержанию в них кислорода, окиси и двуокиси углерода, воды (см. гл. 1). [c.188]

    Остановка блока риформинга состоит из следующих этапов 1) прекращения подачи хлорорганических соединений 2) снижения температуры газосырьевон смеси на входе в реакторы до 470—480 °С 3) уменьшения расхода сырья с последующим его полным прекращением 4) горячей газовой циркуляции на водородсодержащем газе (5—6 ч) по схеме циркуляционные компрес-соры- узел смешения теплообменники->-печи реакторы- тепло-обменники-холодильники -сепаратор циркуляционного газа->-аб-сорберы осушителя (если имеется в схеме)->компрессоры 5) освобождения аппаратуры 6) охлаждения системы с последующей остановкой печей и компрессоров 7) осуществления сброса давления в системе, дренирования продуктов и продувки инертным газом. [c.199]

    Для предварительной гидроочистки это касается таких параметров, как общее давление в системе, кратность циркуляции водородсодержащего газа, объемная скорость подачи сырья, длительность межрегенеращюнного периода. [c.210]

    Для системы рифор.минга это относится к перепаду давления в системе, кратности циркуляции водородсодержащего газа, температуре реакции и общему перепаду температур по реакторам, выходу стабильного катализата, сроку службы катализатора и межрегенерациоиному периоду. [c.210]

    Жидкий продукт из сепаратора 6 стабилизируется в колонне 4, при этом удаляются легкие углеводороды i—С4, образующиеся в результате гидрокрекинга и содержащиеся в водороде подпитки. Хлороводород, который содержится в газах стабилизации, нейтрализуется в скруббере щелочной промывкой. Циркулирующий водородсодержащий газ нз сепаратора 6 возвращается в реактор 2. Для компенсации расхода водорода на реакции гидрокрекинга и потери осуществляют подпитку системы сухим водородсодержащим газом. После отделения пеитана в колонне 5 получают готовый продукт — смесь изопентана (головной погон колонны 1) и изомеров гексана. Изомеризация фракции Q—Q с октановым числом 69 позволяет получить продукт с октановыми числами 83—84 (и. м.) в чистом виде без рециркуляции н-пентана и -гексана, 86 — с рециркуляцией н-пентана и 89—с рециркуляцией пеитана и гексана. [c.184]


Смотреть страницы где упоминается термин Водородсодержащие системы: [c.283]    [c.391]    [c.561]    [c.231]    [c.81]    [c.123]    [c.124]    [c.196]    [c.332]    [c.179]    [c.69]    [c.199]    [c.128]    [c.130]   
Смотреть главы в:

Теория реакторов -> Водородсодержащие системы




ПОИСК





Смотрите так же термины и статьи:

Водородсодержащий газ



© 2025 chem21.info Реклама на сайте