Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекинг-установка, схемы каталитической части

Фиг. 24. Схема реакторной части установки каталитического крекинга с шариковым катали.затором. Фиг. 24. <a href="/info/1460842">Схема реакторной</a> части установки каталитического крекинга с шариковым катали.затором.

Рис. 4. Схема нагревательно-фракционирующей части установки каталитического крекинга после реконструкции. Рис. 4. Схема нагревательно-фракционирующей части установки каталитического крекинга после реконструкции.
Рис. 5. Схема каталитической части крекинг-установки с движущимся катализатором. Рис. 5. Схема каталитической части крекинг-установки с движущимся катализатором.
    Обобщенную структурную схему фракционирующей части установки каталитического крекинга как объекта управления также как и структурную схему РРБ (см. рис. 1-8) можно представить состоящей из двух последовательно соединенных элементов. Первый связывает управляющие воздействия и возмущения с промежуточными координатами, второй — режимные координаты и возмущения с компонентами критерия. Обобщенная структурная схема принципиально совпадает с приведенной в работе [17]. Различие диктуется различными постановками задачи. [c.32]

    В шестидесятых годах по схеме двухкратного испарения мазута с двумя вакуумными колоннами были спроектированы и построены типовые установки АВТ А-12/3, А-12/7, На рис. 13 приведен один из возможных вариантов перегонки мазута по схеме двухкратного испарения. Горячий мазут при 310—315°С насосом отбирается с низа основной ректификационной колонны атмосферной секции и прокачивается через печь 5, где нагревается до 410—420 °С, в первую (основную) вакуумную колонну 1. В колонне широкая вакуумная фракция отделяется от тяжелого остатка гудрона. При работе установки по топливной схеме широкая вакуумная фракция отбирается с 6-ой или 7-ой тарелки первой вакуумной колонны и используется в качестве сырья для каталитического крекинга. При работе же установки по масляной схеме широкая вакуумная фракция после дополнительного подогрева горячим гудроном в теплообменнике перекачивается в среднюю часть второй ваку- [c.34]

    Принципиальная схема каталитической части установки с неподвижным катализатором дана на рис. 3. Катализатор слоем определенной высоты помещают в группе одинаковых реакторов. Пары крекируемого сырья пропускают через предварительно нагретый до нужной температуры катализатор под его действием они подвергаются разложению [3]. Газообразные продукты разложения— крекинг-газ — отводятся из верхней части реакторов, а нелетучие продукты — уголь и смола остаются на поверхности [c.45]


    Рис 3. Схема каталитической части крекинг-установки с неподвижным катализатором. [c.46]

    Рис, 4. Схема каталитической части крекинг-установки с пылевидным катализатором. [c.47]

    Установки каталитического крекинга довольно часто комбинируют с процессами предварительного облагораживания сырья или продуктов крекинга. Так, имеется отечественная схема каталитического крекинга (тип 43-107), в состав которой входят следующие блоки гидроочистка вакуумного дистиллята, каталитический крекинг, ректификация и газофракционирование продуктов крекинга. Блок каталитического крекинга работает на цеолитсодержащем катализаторе, обеспечивающем получение до 50% высокооктанового компонента автомобильного бензина, фракцию дизельного топлива (легкий газойль), тяжелого газойля (котельное топливо, сырье для производства сажи или для коксования) и компонентов углеводородного газа (сухой газ-топливо, бутан-бутиленовая фракция — сырье для алкилировання, пропан-пропиленовая — сырье для получения полипропилена). Предварительная гидроочистка сырья повышает выход [c.178]

    В разделе 1.3.4 рассмотрена обобщенная структурная схема фракционирующей части установки каталитического крекинга, включающая два последовательно соединенных элемента. Первый элемент связывает управляющие и возмущающие воздействия с режимными координатами, второй — режимные координаты с показателями качества продуктов крекинга, являющимися ограничениями в задаче управления. При этом сформулированная в главе I задача автоматической стабилизации показателей качества включает в качестве промежуточной задачу стабилизации режимных координат, а соответствующая система автоматического регулирования показателей качества строится, как правило, по иерархической схеме. Ниже будут рассмотрены в отдельности задачи автоматической стабилизации режимных координат и показателей качества целевых продуктов крекинга. [c.67]

    Схема установки каталитического крекинга в кипящем слое показана на рис. 23. Она состоит из трех основных аппаратов реактора /, разделительной колонны II и регенератора III. Испаренное сырье вводится в поток регенерированного катализатора, движущийся по трубе 5, и поступает вместе с ним в реактор I. Парообразные продукты крекинга отделяются от катали-заторной пыли в циклонах 1 и поступают в колонну II, где частично конденсируются (при охлаждении в холодильниках 2) п разделяются на газ и бензин, жидкие крекинг-фракции и остаток. Часть остатка циркулирует в нижней части колонны, охлаждая пары, поступающие из реактора, и отмывая их от остатков ката- [c.65]

    Установка запроектирована для работы по топливной схеме. Вакуумная часть состоит из одной колонны и предназначена для получения широкой вакуумной фракции, являющейся сырьем установок каталитического крекинга. [c.57]

    Схема установки каталитического крекинга с псевдоожиженным (кипящим) слоем катализатора приведена на рис. 65 . Реактор выполнен из стали Х5М, высота цилиндрической части 250 мм, [c.157]

    На рпс. IV-12 показан один из вариантов технологических схем блока разделения установки каталитического крекинга. Пары катализатора из реактора поступают в нижнюю часть сложной ректификационной колонны под каскадные тарелки. На эти тарелки подается охлажденная флегма, которая забирается с низа колонны насосом. При контакте с флегмой катализаторная пыль увлекается в низ колонны и вместе с флегмой поступает в отстойник, из которого шлам по мере накопления откачивается в реактор. [c.222]

    Наиболее распространены установки каталитического крекинга с псевдоожиженным катализатором, работающие по схеме с нисходящим потоком, называемой так потому, что плотная фаза катализатора удаляется с низа реакторов для циркуляции в другие части системы. На одном из последних образцов установок этого типа катализатор и пары исходного сырья поступают вместе в нижнюю часть реактора и образуют достаточно плотную турбулентную фазу, которая и представляет собой зону реакции. Поток отработанного катализатора непрерывно выводится из плотной фазы, после удаления оставшихся углеводородных паров проходит через регулирующий клапан, подхватывается встречным потоком воздуха и по подъемному трубопроводу переносится в регенератор, где выжигание кокса происходит в плотной фазе катализатора. Горячий регенерированный катализатор в виде плотной фазы выводится из регенератора и смешивается с сырьем перед подачей его в реактор. В реактор может быть подано до 20 кг катализатора на 1 кг нефтяного сырья. Средняя продолжительность пребывания катализатора в реакторе от 2 до 20 мин. [c.396]

    При использовании тяжелого газойля каталитического крекинга в качестве разбавителя котельного топлива или на установке вакуумной перегонки мазута может быть увеличен отбор вакуумного газойля, или на установке висбрекинга может быть выведена часть фракции, выкипающей в пределах 200-350°С, которую можно использовать в качестве компонента дизельного тошшва. Баланс производства по этой схеме показан на рис.1 пунктиром, цифры в скобках здесь и далее - выход продуктов на исходную нефть. [c.110]


    Наличие обширной литературы, посвященной автоматизации процессов первичной переработки и газофракционирования [45, 46], позволяет в настоящей книге отказаться от анализа фракционирующей части как объекта автоматического регулирования и кратко остановиться на описании собственно схем автоматического регулирования режимных координат, принятых на современных действующих и проектируемых установках каталитического крекинга. [c.67]

    На рис.7.9 представлена технологическая схема установки каталитического крекинга с кипящим слоем катализатора 1—А/1—М. Крекируемое сырье через теплообменники 1 подается в печь 2. Нагретое сырье смешивается с рециркулятом (частью тяжелой фракции) и по катализаторопроводу поступает в реактор крекинга 3. В нижнюю отпарную зону реактора вводится водяной пар для отдувки катализатора. Пары продуктов реакции и водяной пар при температуре 450°С из верхней части реактора 3 поступают в нижнюю часть ректификационной колонны 4. Пары бензина и водяной пар отбираются с верхней части колонны, проходят холодильник-конденсатор 5 и поступают в сепаратор 6, в котором разделяются на водяной слой, бензиновый слой и газ. Газ компрессируется и подается на газо-фракционирование, а бензин поступает на ректификацию. Часть бензина отбирается на орошение колонны. [c.138]

    Извлечение СНГ возможно на большинстве технологических установок, перерабатывающих легкие погоны, нефтеперерабатывающих заводов. К числу таких установок относят системы головной фракционной разгонки, цех риформинга дистиллята, установки термического или каталитического крекинга, производящие углеводородные газы для химических заводов и заводов по производству полимерного бензина. СНГ, отбираемые в головной части дистиллятора или извлекаемые в установках риформинга, подобно СНГ из природного газа состоят преимущественно из насыщенных углеводородов с преобладанием бутанов. На других заводах для производства СНГ требуются некоторые ненасыщенные сырьевые продукты. Не все нефтеочистительные заводы оборудованы установками крекинга. Предприятия, предназначенные для производства СНГ из ненасыщенных углеводородов (С3/С4), могут существенно отличаться по своей технологической схеме как от нефтеперерабатывающих заводов без установок крекинга, так и от заводов по переработке природного газа. [c.27]

    Во многих странах заводы, включающие установки каталитического крекинга, эксплуатируются для максимального производства средних дистиллятов. Однако часто увеличить производство средних дистиллятов невозможно из-за неизбежного перепроизводства бензина. Для такого нефтеперерабатывающего завода целесообразно дополнительно включить в схему процесс изомакс с сохранением неизменного уровня производства бензина, несмотря на увеличение объема переработки нефти. Дополнительное же количество перерабатываемой нефти превращается в высококачественные средние дистилляты с выходами, значительно превышающими 100%. [c.69]

    В качестве сырья наряду с бутенами все чаще и в больших объемах используют пропилен и амилены. В схему НПЗ перед установкой алкилирования все чаще включают установку по производству МТБЭ. Перерабатывая фракцию олефинов с установки каталитического крекинга сначала на установке синтеза МТБЭ, где превращается основная часть изобутена, получают более ценное для процесса алкилирования олефиновое сырье. При такой схеме октановое число алкилата примерно на два пункта выше, чем без предварительной обработки олефинового сырья на установке синтеза МТБЭ [191,192]. [c.109]

    Совершенствование процесса каталитического крекинга пошло по линии создания непрерывных систем. Крекинг и регенерация осуществляются в двух отдельных аппаратах, через которые циркулирует катализатор. В одном из вариантов непрерывного процесса — термо-фор-процессе — используется шариковый катализатор, перемещающийся по реактору и регенератору сверху вниз под действием силы тяжести. Схема реакционного узла такой установки изображена на рис. 16. Закоксованный катализатор из реактора 4 ссыпается по трубе в дозер 5 пневмоподъемпика. Здесь он захватывается потоком подогретого воздуха и транспортируется наверх в бункер-сепаратор 1, где за счет снижения скорости газа катализатор отделяется от него и ссыпается в регенератор 3. В последнем кокс выжигается подогретым воздухом, поступающим в несколько мест по высоте регенератора. Во избежание перегрева катализатора регенератор охлаждается водой (конденсатом), поступающей в специальные змеевики. Регенерированный катализатор, имеющий температуру 550—590 °С, ссыпается по трубе в дозер 6 пневмоподъемника, где он увлекается потоком горячего воздуха и перемещается в бункер-сенаратор 2. Из него катализатор попадает в реактор 4, куда подаются пары углеводородного сырья, нагретые предварительно в трубчатой печи до 460—480 °С. Продукты крекинга отводятся из нижней части реактора. Катализатор, движущийся в реакторе сверху вниз, отпаривают от адсор- [c.64]

    На рис. 5.2 приведена схема работы простой ректификационной колонны, состоящей из концентрационной и отгонной части и имеющей два вывода продуктов — с верха и низа. На установках первичной перегонки (АТ и АВТ), коксования, каталитического крекинга и др. получили широкое распространение сложные колонны, в которых как бы совмещается несколько простых колонн (рнс. 5.5). Сложная колонна состоит из нескольких секций, причем, как правило, все секции, кроме нижней, представляют собой концентрационные части простых колонн. Отгонные части этих колонн выделены [c.238]

    На некоторых установках, сырьем которых является мазут помимо атмосферного испарителя, работающего под небольшим избыточным давлением, имеется также вакуумный испаритель. Примером может служить секция, аринципиальная схема которой изображена на рис. 38 [61]. За счет доиспарения полугудрона под вакуумом (остаточное давление 40 мм рт. ст.) увеличивается количество отбираемых из мазута фракций для каталитического крекинга. Отводимая с нижней тарелки верхней половины вакуум-ногб испарителя 4 смесь жидких тяжелых фракций направляется через вторую печь 2 в реактор. Часть этих фракций охлаждается [c.82]

    Обсуждение вопроса разделено на две части а) подготовка и хранение данных и б) анализ и использование данных.. Материалы обеих частей, примеры и конкретные описания ограничиваются програ.ммо сбора и обработки данных по условной установке каталитического крекинга. К счастью, схемы г принципы составления такой программы обычно легко можно с некоторыми изменениями перенести и на другие установки подобную программу сравнительно легко можно включить в общезаводскую систему обработки данных, которая даст важные преимущества при последующей эксплуатации завода. [c.24]

    Наряду с этим дестиллатное сырье довольно часто готовят 11.1 мазута или из смеси его с керосино-соляровыми фракциями на самой установке каталитического крекинга. В этом случае сырь< разделяют на самой крекинг-установке на две части остаточну]о смолистую (гудрон) и дестиллатную. Схема такой установки приведена на фиг. 9. [c.34]

    Современные схемы неглубокой переработки нефти иногда ие включают установок ни термического, ни каталитического крекинга. Кроме установки перегонки нефти на несколько узких фракций предусмотрена гидроочистка отдельных компонентов и в некоторых случаях более широких фракций, которые затем разделяют на более узкие путем вторичной перегонки. Котельное топливо компаундируют из остатков перегонки и тяжелых дистиллятных компонентов, не подвергающихся гидроочистке. Автомобильный бензин с достаточно высоким октановым числом получают в процессе каталитического риформинга тяжелого бензина прямой перегонки. Однако заводы, сооруженные по такой схеме, как правило, нмеют чисто топливный профиль. При необходимости поставлять сырье для нефтехимического синтеза в состав завода включают крекинг-установки или направляют часть малоценных сернистых дистиллятов на установки пиролиза, принадлежащие нефтехимическим заводам. Подробное направление переработки свойственно некоторым нефтеперерабатывающим заводам Западной Европы, сооруженным в 1960 г. На рис. 116 представлена типичная схема глубокой переработки сернистой пефти. Нефть после двухступенчатой электрообессоливающей установки (на схеме не показана) поступает иа атмосферновакуумную перегонку, в результате которой получается несколько светлых дистиллятов, тяжелый газойль и гудрон. Головку бензина и фракцию реактивного топлива после очистки направляют на смесительную станцию для компаундирования. Фракцию тяжелого бензина подвергают каталитическому риформингу для получения высокооктанового компонента бензина или ароматических углеводородов. Кроме того, риформингу подвергается бензиновый дистиллят коксования. Оба компонента сырья предварительно проходят гидроочистку. Предусмотрена экстракция ароматических углеводородов из жидких продуктов риформинга, которая при получении на установке риформинга бензина служит одновременно для отделения и возврата на повторный риформинг непревращенной части сырья. Полученный экстракт путем ректификации разделяют на требуемые компоненты или углеводороды. Керосиновый дистиллят и легкий газойль проходят гидроочистку и используются после этого как компоненты дизельного топлива. Тяжелый вакуумный газойль подвергают каталитическому крекингу в смеси с газойлем коксования. Для увеличеиия выхода светлых на установке каталитического крекинга предусмотрена рециркуляния. Гудрон поступает на установку коксования жидкие продукты этого процесса являются сырьем для установок каталитического риформинга и каталитического крекинга, о чем было упомянуто выше легкий газойль коксования после гидроочистки использустся как компонент дизельного топлива. Кроме того, на установке получают кокс, который можно [c.356]

    Установка (А-12/6) запроектирована для работы по топливной схеме. Вакуумная часть состоит из одной колонны и предназначена для получения широкой вакуумной фракции — сырья каталитического крекинга. Технологические узлы и схема перегонки нефти аналогичны принятым на установке АВТ со вторичной перегонкой бензина производительностью 2,0 млн. т/год нефти, описанной выше. Но на этой установке более эффективно используются вторичные знергоисточники—горячие нефтепродукты, отходящие дымовые газы, горячая вода и пар. За счет отбросного тепла можно производить некоторое количество водяного пара для собственных нужд установки. При переработке обессоленной ромашкинской нефти обеспечиваются следующие выходы продуктов (в вес. % на нефть)  [c.100]

    Возможность определения оптимальных условий процесса по математическому описанию используется в проектных расчетах и, особенно, в автоматизированных системах управления процессом. На рис. 41 охарактеризована типичная структурная схема системы управления каталитическим крекингом с ЭВМ [27]. Система является трехуровневой ЭВМ используется для регулирования процесса, для осуществления текущей оптимизации (т. е. оптимальной реализации задания) и для осуществления статической оптимизации (выработки задания на иекотбрый период работы установки). При наиболее часто осуществляемой текущей оптимизации (каждые 2 ч) регулируется режим работы реакторно-регене- [c.145]

    Предлагаемая схема является составной частью схемы глубокой переработки нефти. Дополнение ее установкой гидрокрекинга тяжелых дистиллятов (выше 450° С) и применение в схеме каталитического крекинга гидроочиш.енных фракций выше 350° С позволит увеличить выход высококачественных нефтепродуктов и углеводородного сырья для нефтехимии. [c.287]

    Установки каталитического крекинга. Для перспективных нефтеперерабатывающих заводов мощностью 12 млн. т1год намечается создать установки каталитического крекинга мощностью до 1,2—1,5 млн. т/год сырья в виде отдельных установок или секций в составе комбинированных нефтеперерабатывающих установок. Наряду с созданием и внедрением установок повышенной мощности целесообразно разработать предложения по упрощению аппаратурного оформления процесса каталитического крекинга по схемам, уже имеющим многолетнюю давность. В ряде случаев, например при переработке сырья с благоприятным углеводородным составом и при высокотемпературном режиме процесса, представляется возможным осуществлять -каталитический крекинг адиабатическим способом, т. е. без применения системы водяного или парового охлаждения. В ГрозНИИ прорабатывается такой вариант каталитического крекинга с применением принципа много крат-ного использования катализатора за одну полную циркуляцию в системе. Использование такой системы позволит сократить циркуляцию катализатора, значительно уменьшить диаметры аппаратов и упростить конструкцию и эксплуатацию установки (исключается система охлаждения катализатора и циклонная система пылеулавливания). Предварительные данные показывают, что ком-бинирован-ный аппарат (реактор-регенератор) будет иметь диаметр порядка 7,5 м при производительности до 1,2—1,5 млн. т1год сырья. Представляется целесообразным часть установок каталитического крекинга соорудить по этой более простой схеме. [c.79]

    На НПЗ среднего масштаба водород получают в процессе каталитического риформинга для 1) обессеривания нафты перед риформингом 2) обессеривания керосина (и, возможно, дизельного топлива) и 3) насыщения части олефинов в нафте. В работе рассматриваемой нами [30], в качестве примера показана принципиальная технологическая схема интегрированного НПЗ мощностью 5 млн. т/год с несколькими крупными установками, потребляющими водород установка гидропереработки остаточного сырья, установка гидроочистки газойля, установка гидрокрекинга рециклового газойля и несколько других установок гидроочистки. Важно иметь в виду, что на данном НПЗ сырье каталитического крекинга уже подвергается предварительной гидроочистке. Суммарная потребность водорода на этом НПЗ составляет 2,57 млн. м7сут, тогда как на установке риформинга нафты выход водорода составляет только 0,62 млн. м7сут. Владелец этого НПЗ вынужден либо закупать недостающий водород на стороне, либо строить свою собственную установку по производству водорода. [c.43]

    Детальный расчет реактора для получения фталевого ангидрида приводят Беранек, Сокол и Винтерштейн исходные данные несколько отличаются от приводимых фирмой Sherwin—Wiliams. Псевдоожиженный слой нашел самое широкое применение на установках каталитического крекинга широкой фракции. Схема такой установки приведена на рис. IV-47 . Установка состоит из двух основных частей — реактора и регенератора. Разложение тяжелых углеводородов на более легкие происходит в реакторе, работающем на алюмо-кремниевом катализаторе диаметром зерен 20—100 мкм. Поток, поднимающий частицы катализатора, создается углеводородными парами, вдуваемыми снизу. Прореагировавшие углеводородные иары проходят через циклоны, отделяющие унесенную пыль и возвращающие ее в реактор. В процессе крекинга катализатор покрывается пленкой кокса. Для восстановления его направляют в регенератор по V-образной трубе. Перед входом в регенератор в трубу вводится воздух на этом участке смесь катализатора с воздухом обладает меньшей плотностью, чем в колене, выходящем из реактора. Вследствие этой разности плотностей катализатор движется по У-образной трубе. В регенераторе пленка кокса выжигается, после чего частицы катализатора возвращаются в реактор по другой V-образной трубе. Каталитический крекинг происходит при температуре 460—510°С и небольшом давлении, не превышающем 1,8 ат. [c.358]

    По схеме совместной переработки гидроочищенная СУН фракционируется на нафту и средние дистилляты. Нафта после дополнительной гидроочистки объединяется с аналогичным погоном атмосферной перегонки нефти и направляется на каталитический риформинг. Средние дистилляты СУН объединяются с вакуумным газойлем и после дополнительной гидроочистки направляются на установку ККФ для выработки крекинг-бензина и компонента печного топлива. Согласно такой схеме дизельное, реактивное и большая часть печного топлива вырабатываются из атмосферных дистиллятов высокосернистой нефти с последующей гидроочисткой соответствующих погонов. Такая схема позволяет минимизировать расход водорода и осуществить экономичное производство полного ассортимента топлив в наиболее благоприятном их соотношении. Поскольку производство высокосернистых продуктов не допускается и из СУН не вырабатывается ни дизельное, ни реактивное топливо (т. е. не используются гидропроцессы высокой жесткости), то ценность СУН на таком заводе даже выше, чем ценность высокосернистой нефти. [c.172]

    Возможны также другие сочетания — переработка легких прямогонных газойлей на установках гидрокрекинга, а тяжелой части газойлей на установках каталитического крекинга. Примером может служить нефтеперерабатывающий завод в г. Паскагуле (США), где процесс гидрокрекинга изомакс занимает ведущее место в схеме завода. Гидрокрекингу подвергают газойлевые фракции, кипящие до 400° С, а фракции 400—565° С поступают на установку каталитического крекинга [18, 19]. [c.246]

    На атмосферно-вакуумных трубчатых установках производится полная перегонка нефти до гудрона или полугудрона. В зависимости от качества перерабатываемой нефти и заданного ассортимента продукции работа АВТ может протекать по диум схемам масляной или топливной. При переработке на АВТ нефтей по первой схеме на атмосферной части установки получают светлые нефтепродукты (первая ступень переработки), а на вакуумной части — масляные дистилляты (вторая ступень переработки). При переработке нефти на АВТ по топливной схеме на атмосферной части установки вырабатываются те же светлые нефтелродукты, а на вакуумной части от мазута отбирается широкая фракция, служащая сырьем для каталитического крекинга. В остатке получают либо гудрон, который направляют для переработки в нефтебитум, либо полугудрон, являющийся сырьем для термического крекинга. [c.155]

    Схема лабораторной установки каталитического крекинга изображена на рис. б4. Реактор изготовлен из трубки тугоплавкого стекла или легированной стали диаметром 25—35 мм, высотой 550—600 мм. Нижняя часть его заполнена стеклянной насадкой (кусочки фарфоровых трубок), на которую насыпан слой катализатора желаемой высоты, затем снова слой фарфоровой насадки. Назначение верхнего слоя насадки — обеспечить испарение сырья, подаваемого в реактор. В середине реактора расположен карман для термопары. Реактор снабжен электрообогревом. Нагревательная печь 5 сделана с одной стороны (ио вертикали) разъемной для извлечения реактора. Головка реактора крепичся иа резьбе и снабжена патрубком, присоединяющимся к выходной лииии насоса. Во время регеиерации ката.пизатора патрубок [c.151]

    Па рис. 56 изображена схема реактора типовой отечественной установки каталитического крекинга. При проектной пропускной способности установки 800 т сутки по свежему сырью диаметр реактора равен 3900 мм, общая высота 41130 мм, объем реакционной зоны от 30 до 50 м . Регенерированный катализатор ссыпается в реактор из бункера через стояк, причем реактор, бункер и стояк смонтированы в общем корпусе. Катализатор, проходя по коническому переходу через переточные трубы, распределяется по сечению реактора. Перед пуском установки длииу переточных труб можно отрегулировать в соответствии с заданным реакционным объемом, поскольку уровень катализатора совпадает с сечением среза труб. Сырье поступает в виде паров через штуцеры 3. В случае тяжелого сырья и если оно испарено только частично, жидкую часть его распыливают через форсунку непосредственно на поверхность катализатора (рис. 57, а). Во избежание закоксовывания коническая струя из форсунки окружена завесой катализатора, большая часть которого (около 80%) в этом случае ссыпается через осевое отверстие [c.175]

    В связи с внедрением в промышленность процесса гидрокрекинга последний может быть введен в поточную схему завода для переработки газойлей прямой перегонки нефти, каталитического крекинга и коксования или же остатков. Один из возможных вариантов такой схемы применительно к высокосериистой иефти представлен на рис. 117. По этой схеме гидрокрекингу подвергается вакуумный газойль сырьем каталитического крекинга служит смесь тяжелого дистиллята гидрокрекинга, гидроочищенного газойля коксования и тяжелого рафината с установки экстракции. Поточная схема, изображенная на рис. 117, отличается от предыдущей большим разнообразием процессов для повышения октанового числа бензина использована установка изомеризации легкой головки бензина, предусмотрено разделение ароматических углеводородов на индивидуальные компоненты, в том числе на изомеры ксилола. С целью увеличения ресурсов ароматических углеводородов в схему введены установки каталитического гидродеалкилирования —для производства бензола из меиее ценного толуола и для производства нафталина из легкого газойля каталитического крекинга. На установке карбамидной депарафинизации вырабатывают зимние сорта дизельного топлива с этой же установки получают жидкий парафин —сырье для производства Луирыых кислот и других химических продуктов. Для увеличения ресурсов газообразных олефинов имеется установка пиролиза этана и бутана. В схеме широко используются процессы гидроочистки и экстракции. Большая часть гудрона идет иа получение кокса. Остальной гудрон идет иа п )оизводство битума, а часть [c.357]

    Чтобы с успехом перерабатывать богатые олефинами газы г устранить нежелательные повышения температуры и местные перегревы катализатора, приводящие в результате отложений сажи к быстрой его деЕ активации, перед входом в контактный аппарат к исходному сырью примешивают некоторое количество газов стабилизации полимер-бензина, которые бедны олефинами. Этим самым содержание олефинов в исходном газа понижают в среднем с 38% до 28—30%. Полученная смесь газов проходит при 205 серию контактных аппаратов для полимеризации и отсюда попадает через конденсатор в приемник, из которого избыточный газ выпус ают через вентиль, регулирующий давление. Затем полимер-бензин стабилизируют нод таким высоким давлением, чтобы часть газов стабилизации <5ез всякого дополнительного компримирования можно было использовать длразбавления исходного сырья перед вводом в контактный аппарат. Оста1 ьнос количество газов стабилизации передают в топливную сеть или используют для других целей. Давление во всей установке поддерживают постоянным при помощи регулирующего вентиля гса приемнике жидких продуктов полимеризации, находящемся после конденсатора. Режим процесса полимеризации можно варьировать в широких пределах. Ни в коем случае не следует его ограничивать жесткими рамками, наоборот, нужно иметь возможность, не изменяя схемы, приноравливать процесс к любым г онкретным условиям. На описанной выше установке [54] производят полимер-бензин из смеси углеводородов Сд-64, полученной с установки каталитического крекинга и имеющей следующий состав (в % мол.)  [c.307]

    Технология производства КИС с использованием процесса гидроочнстки вакуумных газойлей обладает большим достоинством, так как позволяет получать стабильное качество крекинг-остатка, а значит и кокса, при изменении качества вакуумного газойля по содержанию серы. Однако, существенньпй недостатком технологии является то, что при крекировании вакуумного газойля, крекинг-остатка целевого продукта -кокса получается на уровне 30-35%, а 65-70% - это газ, а также нестабильные по своим свойствам бензин и фракции дизельного топлива, для доведения свойств которых до товарных требуется дополнительных расход водорода и риформирование бензина для повьппения октанового числа. В этом отношении гораздо более изящной является технология получения КИС прямым коксованием так называемых декантойлей -газойлей каталитического крекинга с установок типа 43-107, освобожденных от катализаторной пыли. В мировой практике по данной схеме производится значительный объем игольчатого кокса. В схеме установки 43-107 имеется установка гидроочистки вакуумного газойля, но ее главное назначение - сероочистка исходного вакуумного газойля до такой глубины, чтобы обеспечивалось допустимое содержание серы в бензине - основном продукте процесса. Это обстоятельство часто приводит к тому, что качество бензина обеспечивается, а содержание серы в газойлевых фракциях остается достаточно высоким, что приводит к повышенному содержанию серы в коксе. Как показывает опыт эксплуатации установок 43-107 на НПЗ в г.г. Уфе, Павлодаре, Москве содержание серы в коксе при коксовании декантойлей с этих заводов в лабораторных условиях не превышает 1,0 - 1,2% вес., а в среднем находится на уровне 0,6-0,9% мае. Учитывая, что уже в настоящее время эксплуатируются установки типа 43-107 на НПЗ в Москве, Уфе, Омске, [c.54]

    Схема реакторного блока современной установки каталитического крекинга приведена на рис. 28. Нагретое сырье после гидроочистки смешивается с рециркулятом и водяным паром и подается в узел смешения 2 прямоточного лифта-реактора I. Сырье контактирует с регенерированным горячим катализатором в прямотоке, где происходят его испарение и основная стадия химического превращения. Продукты реакции вместе с катализатором поступают в отстойную зону 8 реактора 7, играющую роль бункера-сепаратора. После отделения от продуктов реакции основной массы катализатора газы и перегретые пары углеводородов с водяным паром проходят циклоны и направляются в ректификационную колонну 10 для разделения. Отстоявшаяся катализаторная масса поступает в отпарную зону 9 реактора, где нефтяные пары десорбцией водяным паром отделяются с поверхности катализатора. Далее закоксо-ванный катализатор по наклонному катализаторопрово-ду поступает в регенератор 4, где в псевдоожиженном слое происходит выжиг кокса. В низ регенератора подают воздух, который может предварительно нагреваться в топке 3. Дымовые газы с верха регенератора через систему циклонов направляются в электрофильтры 6 и котел-утилизатор 5. Регенерированный катализатор поступает в узел смешения с сырьем. Продукты реакции в виде перегретых паров направляются в нижнюю часть ректификационной колонны, где в результате контакта с орошением происходит снятие тепла перегрева и улавливание части катализатора, унесенного из реактора. Далее газы, водяные пары и пары продуктов реакции поступают в концентрационную часть колонны на ректификацию, а остаток выводится из нижней части колонны. Образующийся шлам с низа колонны [c.76]

    По первому (бензиновому) варианту (рис. 12.134) технологическая схема процесса предусматривает использование пяти полочных реакторов четыре последовательных реактора с промежуточным охлаждением потоком сырья находятся в режиме олигомеризации, а пятый ( плавающий реактор) — на регенерации катализатора. Сырье — нропан-пропиленовую фракцию — рекомендуется очищать цеолитами. В реакторах 2 при температуре 200-300 °С и давлении 5,0 МПа осуществляется олигомеризация пропилена. Продукты реакции после охлаждения дросселируются в сепаратор 4, а выходящая из сепаратора газовая фаза охлаждается и направляется в ректификационную колонну 7 для вьщеления отработанной ППФ. Часть последней рециркулируется в реакторы олигомеризации, а балансовое количество выводится с установки и используется в качестве топлтного газа. Жидкость из сепаратора направляется в колонну 8 для выделения верхнего продукта — компонента бензина (фракция н. к. 200 °С). Кубом колонны выводится более тяжелая фракция, которая может быть использована в качестве компонента дизельною топлива. При работе установки на ППФ каталитического крекинга (75 масс. % пропилена) выработка жидкого продукта на сырье может превышать 70 %, в [c.922]

    На Красноводском НПЗ в 1984 г. введена в эксплуатацию установка вакуумной перегонки мазута ВТ-Й, По проекту на установке ВТ-2 из мазута смеси малосернистых нефтей должны вырабатьшаться фракция дизтоплива,вакуумный газойль - сырье установки каталитического крекинга и гудрон-сырье УЗК. Вакуумная колонна установки ВТ-2 odopyдoвшia 22 (18 в укреп-тающей и 4 в отгонной части) клапанными, прямоточными ректификационными тарелками. При работе по фактической схеме обеспечивается получение гудрона с коксуемостью 10, 0 мае., однако ректификационные тарелки не об,еспе-чивают конденсацию паров фракции дизтоплива,отбор которой в количестве 2% мае. на мазут осуществляется через верх вакуумной колонны. Вакуумный газойль при неглубоком (до 470°С по ИТК) отборе иглеет высокий конец кипения - выше 500°С. [c.60]

    Наряду со старыми маломощными установками типа 43-102 в отрасли эксплуатируются более совершенные и мощные установки с кипящим слоем катализатора типа "флюид" (1-А/1М, ГК-3, 43-103). На их долю приходится почти половина проектной мощности установок каталитического крекинга и около двух третей объема переработки тяжелого сырья, хотя по количеству они составляют одну четвертую часть от всех действующих установок. На сегодняшний день установки типа 1-А/1М остаются основным типом отечественных установок на мелкодисперсном катализаторе. Несмотря на то, что эти установки находятся на более высоком техническом уровне по сравнению с установками типа 43-102, но спроектированные еще в 50-х годах, они ииеют ряд недостатков, связанных с первоначальным выбором показателей, принципиальной схемой оборудования и размеров аппаратов. К основным недостаткам этих установок можно отнести неудачную компоновку реакторного блока несоответствие между проектной мощностью и завышенными размерами основных аппаратов установки - реактора и регенератора неудовлетворительную работу морально устаревших газомоторных компрессоров жирного газа 3 и 10 ГК неудовлетворительное охлаждение газобензиновой фракции после ректификационной колонны. [c.8]


Смотреть страницы где упоминается термин Крекинг-установка, схемы каталитической части: [c.56]    [c.192]    [c.73]   
Синтетические каучуки (1949) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг схема

Крекинг-установка схема

Схема каталитической



© 2024 chem21.info Реклама на сайте