Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

От Системы химических элементов к Системе атомов

    Систематическое ознакомление со свойствами химических элементов и их важнейших соединений начнем с водорода — элемента, атом которого наиболее прост по структуре. В периодической системе водород находится в седьмой группе, поэтому естественнее всего начать обзор свойств химических элементов с элементов седьмой группы. [c.287]


    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Новые способы и новые возможности научного прогнозирования открывает нам Система атомов, являясь новым уровнем обобщения знаний о строении вещества. Если в Системе химических элементов объектом прогнозирования был химический элемент (вид атомов), то в Системе атомов — отдельный конкретный атом, представляющий подвид. [c.132]

    Руководствуясь Периодической системой, укажите символ химического элемента, нейтральному атому которого отвечает следующая электронная формула  [c.153]

    Химические свойства. Как элемент, занимающий место в правом верхнем углу периодической системы химических элементов Д. И. Менделеева, кислород обладает ярко выраженными неметаллическими свойствами. Имея на наружном энергетическом уровне шесть электронов, атом кислорода может перейти к предельно заполненной 8-й электронной оболочке (условие максимальной химической устойчивости), присоединив 2 электрона. Поэтому в реакциях с другими элементами (кроме фтора) кислород проявляет исключительно окислительные свойства. [c.178]

    Атом водорода состоит из одного протона (ядро) и одного электрона. Это простейший атом, не имеющий аналогов в периодической системе химических элементов Д. И. Менделеева. Он способен терять электрон с образованием положительно заряженного катиона Н и в этом отношении сходен со щелочными металлами, которые также проявляют степень окисления + 1. Однако катион Н" " представляет собой голый протон, в то время как ядра катионов щелочных элементов окружены электронными оболочками. Ион водорода имеет очень небольшой радиус — 0,53-10 см, поэтому в ходе химических реакций он легко проникает в электронные облака других атомов, причем связь может быть ковалентной. [c.98]


    Масса атома, выраженная в (а.е.м.) или (у.е), называется относительной атомной массой химического элемента (обозначается Ат). Относительные атомные массы элементов приведены в Периодической системе элементов Д.И.Менделеева, из которой видно, что относительная атомная масса равна, например, водорода — 1,0 07 9 кислорода — 15,999 и т.п. Масса любого атома Ма = Лг х 1,66 х 10 27 кг. Относительная молекулярная масса вещества (химического соединения) (обозначается Мг) — это также безразмерная величина, которая выражает массу молекулы в (а.е.м.) или (у.е). (Эна представляет собой арифметическую сумму относительных атомных масс отдельных эле-лементов, образующих молекулу. Например, для молекулы серной [c.10]

    Атом каждого химического элемента состоит из положительного ядра и отрицательных электронов, вращающихся вокруг ядра. В нейтральном атоме отрицательный заряд электронов уравновешивается положительным зарядом ядра. Положительный заряд ядра равен где Z — порядковый номер данного элемента (в периодической системе Менделеева), а е — величина заряда электрона. Самым простым является атом водорода, состоящий из ядра и одного электрона. [c.11]

    Периодическая система химических элементов тесно связана не только с превращением атомов, но и с их строением. В свете квантовой волновой теории модель атома потеряла свою наглядность, поскольку в соответствии с этой теорией электрон размазан по всему атому. Это как бы не имеющее резких границ вращающееся веретено или другая фигура, называемая в общем виде электронным облаком, которое обладает магнитным моментом. [c.48]

    В металлических проводниках электрический ток представляет собой движение этих электронов при силе тока в 1 ампер 6,3 10 электронов протекают в секунду через поперечное сечение проводника. Для того чтобы понять это, мы должны воспользоваться нашими познаниями в строении атомов химических элементов. Явления радиоактивности, а также исследования с помощью рентгеновских лучей, привели к заключению, что атомы состоят из положительно заряженного ядра, окруженного системой отрицательно заряженных электронов, которые мы можем сравнить с планетами нашей солнечной системы ). Несмотря на то, что носителем атомной массы является ядро, объем последнего ничтожен по сравнению с измерениями атома диаметр ядра для различных элементов выражается величиной порядка 10 см. Кроме положительных зарядов ядро содержит также и отрицательные электроны, которые можно рассматривать как связующее вещество . Избыток положительных зарядов указывает порядковое число данного элемента оно определяет такке и количество электронов, вращающихся вокруг ядра, так как по отношению к внешней среде атом является электрически нейтральным,. Электроны вращаются вокруг ядра нормального атома на более или менее отдаленных и наклоненных друг к другу эллиптических орбитах — так называемых дискретных и свободных от излучения квантовых орбитах. Внешние воздействия могут перебрасывать электроны с одной орбиты на другую. Часто (но не всегда) ) электроны, находящиеся на внешней орбите, легче всего отщепляются. Эти легко отщепляющиеся электроны играют роль при многих реакциях, поскольку последние вообще возможны с точки зрения общих законов энергетики, и поэтому их назы- вают у электроположительных элементов электронами валентности. [c.18]

    Для систематизации химии органических соединений фосфора представляется целесообразным прибегнуть к помощи тех аналогий и различий, которые можно установить между этой ветвью химии и химией углеводородов. Так как углерод является элементом 2-го ряда периодической системы химических элементов, химические связи его могут возникать лишь за счет использования 5- и р-орбиталей. Вследствие этого атом углерода может образовать только четыре р-связи, соответствующие 5р -гибриду. Для того чтобы образовались л-связи, должно уменьшиться координационное число (по сравнению с координационным числом атома углерода, связанного с-связями), что означает переход в состояние зр - или зр-гиб-ридизации. Для изображения упомянутых состояний пишут обычные структурные формулы с ординарными, двойными и тройными связями у атома углерода. Другая характерная особенность соединений углерода обусловлена тем, что атом углерода обладает четырьмя электронами в валентной оболочке. Следовательно, о-связи образуются парами электронов, отданных по одному каждым атомом, соединенны.м связью. [c.55]

    В этом разделе мы попытаемся разобраться в том, как устроен атом и чем атомы одного химического элемента отличаются от атомов другого химического элемента, а также научимся получать информацию о строении конкретного атома на основе его расположения в Периодической системе химических элементов. Подробное изложение истории о там, как человечество пришло к столь значительным знаниям, нас, в данный момент, не интересует. [c.20]


    К третьему уровню иерархии относятся явления, связанные с процессом взаимодействия системы кристалл — несущая (сплошная) фаза. Наглядную картину структуры связей ФХС демонстрирует обычно диаграмма взаимных влияний физических и химических явлений системы. При построении такой диаграммы ФХС представляем в виде набора элементов и их связей. При этом узлам диаграммы ставятся в соответствие отдельные явления или эффекты в системе, а дугам — причинно-следственные связи между ними (рис. 1). Растущая кристаллическая частица движется в объеме сплошной фазы под действием сил сопротивления, инерционных, тяжести, подвергаясь одновременно воздействию механизма переноса массы ПМ, энергии ПЭ и импульса ПИ через границу раздела фаз в направлении 1- 2 (где 1 означает принадлежность к сплошной фазе, 2 — к кристаллу). Процесс кристаллизации на частице идет при неравновесии химических потенциалов вещества в несущей фазе и в частице Д , неравновесности по температурам фаз Ат скоростной неравновесности А , т. е. при несовпадении скоростей фаз. Поэтому естественно принять, что рассматриваемая неравновесность гетерогенной системы и обусловливает совокупность явлений, составляющих механизм межфазного переноса при кристаллизации. Причем неравновесность гетерогенной системы в целом (по Ац, Ат, А ) обусловливает в качестве прямого эффекта (сплошные дуги) перенос массы через поверхность в направлении 1- 2 (дуги 1, 2, 3). Каждый вид неравновесности обусловливает прежде всего перенос соответствующей субстанции (дуги 4, 5) и одновременно оказывает перекрестное или косвенное влияние (пунктирные дуги) на перенос других субстанций (для ПЭ — дуги 6, 9 для ПИ — дуги 7, 8). [c.8]

    Прогнозирование на атомном уровне более глубокий и тонкий процесс, чем прогнозирование на уровне химических элементов. Принципиальным различием между ними является объект прогнозирования. В Периодической системе — это химический элемент, а в рядах — атом, представитель подвида. В этом свете можно говорить о более высокой разрешающей способности рядов по сравнению с Периодической системой. [c.101]

    Как говорится, что хотели, то и получили Но эта связь не носит характера закономерного синтеза знаний. Это формальное совмещение двух "снимков", разноуровневых по смыслу, на общее "клише". Я не оспариваю целесообразности такого метода сопряжения знаний вообще. Но в этом аспекте, в каком мы рассматриваем множество атомов, его не назовешь генетически последовательным, потому что смысл элемента радиоактивного ряда (атом) искусственно расширен до смысла химического элемента, чтобы стать адекватным первоэлементу в структуре Периодической системы. Как видим, здесь обошлось без натяжки. [c.103]

    Бромная кислота в отличие от хлорной и йодной в свободном виде неустойчива, и окислительные свойства у нее проявляются гораздо сильнее, чем у хлорной, хотя по силе эти кислоты примерно одинаковы. Йодная же кислота является слабой кислотой, кристаллизуется в виде дигидрата Н104 2И20 и обнаруживает свойства многоосновной кислоты, поскольку образует соли, отвечающие замещению всех пяти атомов водорода атомами металла, например NasIOe. Это неудивительно, так как крупный атом иода координирует вокруг себя больше атомов кислорода, чем бром или хлор (6 вместо 4). Такая же тенденция проявляется в других группах периодической системы химических элементов Д. И. Менделеева (ср., например, серную и теллуровую кислоты). [c.108]

    В зависимости от положения элемента в периодической системе атом водорода в соединении с ним приобретает либо отрицательный, либо положительный заряд (табл. В.19). Величина и направление дипольного момента связи Н—X в значительной степени определяют физические и химические свойства гидридов. [c.461]

    ГАФНИЙ (Hafnium, от древнего названия Копенгагена) Hf — химический элемент IV группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 72, ат. м. 178,49 природный Г. состоит из шести изотопов. Положение Г. в периодической системе предсказал Д. И. Менделеев задолго до его открытия. Основываясь на выводах Н, Бора о строении атома 72-го элемента, Д. Костер и Г. Хевеши обнаружили этот элемент в минералах циркония и назвали его. Г.— рассеянный элемент, не имеет собственных минералов, в природе сопутствует цирконию (I — 7%). Г.— серебристо-белый металл, т. нл. 2222 30 С чистый Г. очень пластичен и ковок, легко поддается холодной и горячей обработке. По своим химическим свойствам очень близок к цирконию, потому их трудно разделить. В соединениях Г. четырехвалентен. Металлический Г. легко поглощает газы. На воздухе Г. покрывается тонкой пленкой оксида HfOj. При нагревании реагирует с галогенами, а при высоких температурах — с азотом и углеродом, [c.65]

    Нечеткое понимание границ рассматриваемой проблемы м порождает представление о ее безбрежности и непостижимости. Поэтому можно утверждать, что часть так называемых проблем системы химических элементов притянуты к ней за уши , хотя есть еще нерешенные вопросы, касающиеся действительно ее самой. Это блок вопросов, связанных с рас-.тутыванием узлов неопределенностей на стыках атом — химический элемент, Система атомов — Система химических элементов, а также (как ни странно) — построение наглядной модели, адекватно отображающей естественное множество атомов как систему природы. А это значит, что система одно- . ременно должна читаться и как Система атомов, и как Система химических элементов, а также отражать генетическую связь между ними. [c.144]

    Итак, в периодической системе свойства элементов, их атом-пая масса, валентность, химический характер изменяются в известной последовательности как в горизонтальном, так и в вертикальном иаиравлениях. Место элемента в таблице определяется, следовательно, его свойствами, и, наоборот, каждому месту соответствует элемент, обладающий определенной совокупиостью свойств. Поэтому, зная положение элемента в таблице, можно довольно точно указать его свойства. [c.53]

    В главных подгруппах периодической системы химических элементов в направлении сверху вниз кислотные свойства высших оксидов неметаллов уменьшаются. Так, например, в главной подгруппе V группы оксид азота (V) обладает более сильными кислотными свойствами (образует одну из сильнейших кислот — азотную кислоту HNQ3). чем оксид фосфора (V) Р2О5. Это объясняется тем, что атом фосфора имеет больший атомный радиус по сравнению с атомом азота. Поэтому действие положительных ионов фосфора на ионы кислорода и водорода слабее, чем соответствующее действие положительных ионов азота, размер которых значительно меньше. [c.132]

    Многие катализаторы содерн ат переходные элементы илп их соединения, т. е. в них тгеются незаполненные й- или/-оболочки. К ним принадлежат. 53 из 102 элементов Периодической системы химических элементов. Кроме того, имеются элементы, в атомах которых (I- или /-оболочки заполнены, но становятся незаполтген-ными в соединениях в результате образования связи. [c.424]

    Исключительная роль в проблеме распределения химических элементов по фазам принадлежит явлению изоморфизма, способности замещать атом на атом, группы атомов на группу других атомов и т. п. в кристаллических ретдетках минералов. За последние годы стало ясно, что полное решение этой задачи лежит в систематическом установлении энергии связи между разными атомами в кристаллических решетках минералов. Поэтому стало важным определение ионности связи. Эти правила вытекают из системы Менделеева. Так, например, ионы металлов средней части системы (поле халькофильных элементов) имеют больше ковалентных связей, чем, например, ионы в первых т])ех периодах. Например, у dS больше ковалентной связи, чем у Са8, а РеО более ковалентно, чем М 0, и т. д. [c.211]

    Атом — мельчайшая частица химического элемента. Радиусы атомов изменяются от 0,3 до ЗА (1А —ангстрем=10" см) соответственно с этим объемы атомов изм- яются от 1,13-10 до 1,30 10 -Средняя масса одного атомо - ожет быть найдена де тением массы грамм-атома элемента на число томов в грамм-атоме, т. е. на 6,0228-10- (число Авогадро), В прс . тах периодической системы элементов масса атомов различных элементов колеб.чется от 1,67-10 до 4,27-10 г. Плотность вещества в атомах, определяемая делением массы атома на его объем, прибли-зитыьно равна 4—15 г/см . [c.7]

    Изотопы. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории строения атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные (отклонения от целых чисел можно объяснить недостаточной точностью измерений. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объясннгь нелочностью измерении и другими случайными причинами. Например, атомная масса хлора равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть — 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих ра и ые массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами, Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами от греческих слов изос и топос , что означает одинаковый и место (здесь имеется в виду, что разные изогоны одного элемента занимают одно место в периодической системе), С точки зрения протонно-нейтронной теории изотопами являются разновидности элементов, ядра атом.ов которых содержат различн-je число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, ко- [c.22]

    В наиболее распространенной короткой форме таблицы и в среднепериодном варианте (полудлинная таблица) они вынесены за их рамки. (Роковая уступка типографским требованиям ) В этих таблицах все они, как и их первые представители (Ьа и Ас), отнесены к 3-й валентной группе. Об ошибочности такого шага можно было догадаться и раньше. К сожалению, и сегодня, когда имеется достаточно подтверждений о проявлении некоторыми лантаноидами и актиноидами более высоких валентностей, вплоть до 7-1- (Кр, Ри, Ат й др.), их продолжают держать в третьей валентной группе. Удивительный консерватизм систематизаторов Да и табличные варианты системы не подсказывают иного решения проблемы. Существует некое неписаное правило брать в основу причисления химического элемента к той или иной валентной группе фактически установленную высшую его валентность. Но это слишком ненадежная основа. 1 е переносить же химический элемент с места на место в таблице после каждого обнаружения у него еще более высокой валентности  [c.73]

    Объективная картина данной графической зависимости открылась на построенной мной Системе атомов, в ее генетических рядах (рис. 5, 8). Оказалось, что никаких кривых второго порядка не существует и что объектом эволюции является не химический элемент (вид атомов), а индивид, т. е. атом конкретного подвида. Все направления эволюции атомов имеют линейный характер (горизонтальные, вертикальные, пологонаклонные и крутонаклонные ряды). Главные генетические ряды параллельны ряду, который на рис. 5 и 10 отвечает формуле А = 2 №. Сегодня понятна и причина прямолинейности графика (рис. 10) на участке от водорода до кальция и выражение ее формулой А = 2 №. Этот отрезок графика лег на Главный генетический ряд № О, который характеризуется равенством числа протонов (р ) и нейтронов (Н) в ядре (Ер" = ЕК). А если учесть, что № =Ер , то запись А = 2 № тождественна записи А = 2 р , так же А = 2 N или А = Ер +I N. [c.120]

    Систему видов атомов (рис. 5) можно еще больще химизировать , если избавиться от излишней физической информативности ее. Для этого вид атомов (на модели — изопротонный ряд) упростим до абстрактного атома путем усреднения атомной массы всех подвидов. В результате на модели вместо плеяды точек получим одну точку, представляющую этот абстрактный атом. По смыслу и характеристикам он тождественен химическому элементу, используемому в табличных вариантах системы. Эту модель можно без оговорок называть Системой химических элементов. Она представлена на рис. 11, [c.154]

    Как отмечает В. И. Кузнецов [17] Даже при беглом в гляде на состав химических соединений мы убеждаемся, что атомность только в исключительных случаях, прежде всего для кислорода, водорода и фтора, неизменна. Элементарные атомы часто проявляют к положительным элементам другую атомность, чем к отрицательным . Это очень важное замечание. Оно побуждает к иному объяснению природы валентности, так как взаимодействуют не только положительный атом с отрицательным атомом. Взаимодействуют друг с другом и однознаковые атомы, что, казалось бы, ломает все предписанные им Периодической системой правила поведения . Э го кажущееся противоречие снимается, как только мы переходим к рассмотрению химической связи на электронном уровне. Решающим фактором здесь является относительная электронодонорность атомов, участвующих во взаимодействии. При взаимодействии двух однозначных атомов в каче-стие положительного будет выступать тот, электронодонорность которого вьш1е, т. е. электроны внешнего слоя (слоев) подвижнее. А это, в свою очередь, зависит от типа внешнего слоя (слоев) в структуре электронной оболочки, что и является нсриопричиной структуры системы химических элемен-юн. [c.175]

    АРГОН (греч. argos — недеятельный) Аг — химический элемент VIII группы основной подгруппы 3-го периода периодической системы элементов Д. II. Менделеева п. и. 18, ат. м. 39,948. Вхо.дит в число инертных газов. Содержание в атмосфере 0,93 об.%. Открыт в 1894 г. Д. Рэлеем и У. Рамзаем. Бесцветный газ, без вкуса и запаха. Существует три изотопа А. Аг, зздг ц мдг. В природных условиях "Аг образуется при радиоактивном распаде Это ис- [c.30]

    ГАЛЛИЙ (Gallium, от древнего названия Франции) Ga — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 31, ат. м. 69,72. Имеет два изотопа Ga и iGa. Существование Г. (экаалюминия) предвидел Д. И. Менделеев еще в 1870 г. Впервые выделил Г. в 1875 г. французский химик П. Е. Ле-кок де Буабодран. Г.— серебристо-белый металл, т. пл. 29,8°С, т. кип. 2230 С. В химическом отношении очень напоминает алюминий. В соединениях Г. трехвалентен. При обыкновенной температуре не окисляется, водород из воды не вытесняет. Галогены (кроме иода) взаимодейсгвуют с Г. при обыкновенных условиях. При нагревании растворяется в большинстве минеральных кислот. Оксид Г. GaaOa белого цвета. Гидроксид [c.64]

    ГОЛЬМИЙ (Holmium, от лат. названия Стокгольма) Но — химический элемент HI группы 6-го периода периодической системы элементов Д. И. Менделеева, п. и. 67, ат. м. 164,9304, относится к семейству лантаноидов. Г. — металл, т. пл. 1475—1525° С. В соединениях Г. трехвалентен. Оксид и соли Г. окрашены в желтый цвет. [c.78]


Смотреть страницы где упоминается термин От Системы химических элементов к Системе атомов: [c.486]    [c.194]    [c.38]    [c.490]    [c.170]    [c.16]    [c.49]    [c.99]    [c.177]    [c.38]    [c.47]    [c.52]    [c.54]    [c.59]    [c.62]    [c.69]   
Смотреть главы в:

Система химических элементов -> От Системы химических элементов к Системе атомов




ПОИСК





Смотрите так же термины и статьи:

Элемент химический



© 2025 chem21.info Реклама на сайте