Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабильность перхлоратов

    Стабильность перхлоратов, по-видимому, аналогична наблюдавшейся стабильности перхлоратов многочисленных азотистых основа[Ний, низшие представители которых взрывоопасны, а высшие сравнительно [c.97]

    Перхлораты металлов в чистом виде являются достаточно стабильными соединениями. Однако в присутствии органических соединений или веществ, способных легко окисляться, перхлораты становятся пожаро- и взрывоопасными, поэтому при хранении, транспортировании и использовании перхлоратов необходимо исключить их контакт со смазочными материалами и легкоокисляющимися веществами. Чувствительность перхлоратов к ударам, трению и другим инициирующим воздействиям требует особенной осторожности при работе с ними. При попадании перхлоратов на одежду ее необходимо тщательно промыть водой. [c.168]


    Соли хлорной кислоты так же, как и хлорная кислота, — соединения, богатые кислородом. Многие перхлораты в отличие от хлорной кислоты обладают достаточной стабильностью. Такие соли, как перхлораты щелочных металлов и, главным образом, перхлорат аммония широко используются в качестве окислителей для ракетных топлив и в пиротехнике. Перхлораты щелочноземельных металлов обладают высокой гигроскопичностью, поэтому они обычно не применяются ни в ракетной технике, ни для пиротехнических целей. Перхлорат магния широко используется как очень эффективный осушитель. [c.432]

    Чистые перхлораты металлов в обычных условиях — достаточно стабильные соединения. В контакте с органическими соединениями или веществами, способными окисляться, перхлораты становятся огне- и взрывоопасными. Поэтому в процессе производства, хранения, транспортирования и применения перхлоратов необходимо исключить контакт этих солей со смазочными материалами или веществами, способными окисляться. Перхлораты чувствительны к ударам, трению и другим инициирующим воздействиям. Наблюдались случаи взрывов (перхлората аммония) при растирании соли в ступке. При обращении с перхлоратами необходимо соблюдать осторожность. При попадании перхлоратов или их растворов на одежду, ее следует немедленно тщательно вымыть. Перхлораты разрушают кожу и действуют на слизистые оболочки. [c.432]

    При переработке электролитических щелоков на товарный продукт — перхлорат натрия или перхлораты других металлов, получаемые обменным разложением перхлората натрия с соответствующими солями, необходима тщательная очистка растворов от остаточного содержания хлората натрия. Примеси хлората натрия к перхлорату снижают стабильность получаемых продуктов, что особенно важно для перхлората аммония [117]. Очистка от хлоратов обычно производится путем его солянокислого разложения [c.440]

    Основным продуктом по обеим схемам является пентаоксид азота. Образующийся по схеме I ион-радикал НОз очень активен, относительно стабильный он только в присутствии перхлорат-иона, в других случаях вступает в реакцию с присутствующими в растворе катионами и анионами. Так, Ag(I) окисляется до Ag(II) [1147]. Если в растворе отсутствуют реактивные катионы и анионы, НОз разлагает растворитель. [c.125]

    Одним из основных условий применения неводных растворов для электрохимических исследований является электрохимическая стабильность. Электрохимическая устойчивость электролита определяется областью потенциалов, в пределах которой не протекают электрохимические реакции с участием растворителя. Понятие электрохимической устойчивости в последнее время уточнено — ее определяют как область циклических вольт-амперных кривых с токами практически меньшими, чем менее 10 мкА-см-2 [676, 303]. Многие из органических растворителей окисляются или восстанавливаются труднее, чем вода, что обусловливает их стабильность в более широкой области потенциалов. Наибольшая протяженность устойчивой области, достигающ,ая 5,0—5,5 В, наблюдается в растворах перхлората лития в АН, изо-пропаноле, ДМСО, ДМФА. В смесях органических растворителей с водой протяженность области электрохимической стабильности значительно сокращена, наибольшие изменения происходят при малых концентрациях одного растворителя в другом, что связывают с пересольватацией ионов [154]. [c.136]


    Стабильность перхлоратов алкиларилов, типичных солей карбония, возрастает по мере замены водорода в метильной группе фе-нильными радикалами- . Перхлорат бензила, по-видимому, взрывчат, так как попытка разрушения бензилцеллюлозы кипячением с хлорной кислото11 закончилась дeтoнaцнeи . [c.214]

    Стабилизирующее влияние пара-заместителей можно наблюдать и ири образовании стабильного перхлората из 3,3 -диме-тилбензидина (о-толуидина) [85]. Это соединение получается с выходом по току, равным 90%, при электроокислении о-толуидина (о-Т) на платиновом аноде в дихлорметане, содержащем перхлорат тетраэтиламмония. Сине-черный продукт электрохимической реакции о-толуидина в этих условиях прочно прилипает к поверхности электрода и тем не менее не блокирует ее по отношению к продолжению электроокисления о-Т. Дальнейшее течение реакции контролируется по снижению концентрации о-Т сиектрофотометрически или по падению силы тока при проведении эксперимента в условиях потенциостатнрования. После исчерпывающего электроокисления продукт реакции механически снимают с анода. Случаи анодного окисления, приводящего к устойчивым солям, редки несомненно потому, что катион-радикал должен быть не только устойчив к окислению в рабочем диапазоне потенциалов, но также достаточно плохо растворяться в анолите. Электрохимия о-Т была исследована в растворителе, растворяющем катион-радикальный перхлорат. В ацетонитриле в присутствии перхлората тетраэтиламмония циклическая вольтамперометрия на платиновом электроде показывает, что о-Т окисляется в две стадии с потенциалами пиков 0,5 и 0,7 В относительно нас. к. э. Кулонометрия при контролируемом потенциале показывает, что каждая из этих двух стадий включает гетерогенный перенос одного электрона в расчете на одну молекулу субстрата, что отвечает соответственно образованию катион-радикала и дикатиона о-Т. [c.71]

    Взаимодействие дифенилдиазометана в метиленхлориде с водным раствором дифторида калия КНЕг в присутствии перхлората тетрабутиламмония за 48 ч в темноте дало 50% дифе-нил метилфторида, 10% бензгидрола и 35% полимера. Аналогично ведут себя и другие диарилдиазометаны, однако 9-диазо-флуорен оказался более стабильным в этой реакции и образовалось только 14% фторида [59]. Другим методом превращения спиртов в хлориды в щелочной среде является реакция с ди-хлоркарбеном, ставшая доступной благодаря МФК. Этот -метод будет обсужден в разд. 3.20.2. [c.117]

    Хлорная кислота — наиболее сильная и стабильная из всех кис-лородсодержащих кислот хлора. Она находит широкое применение в аналитической практике, в гальваностегии, фотографии, а также как катализатор реакции этерификации, например, при ацетили-ровании целлюлозы. Хлорная кислота и перхлораты могут применяться как растворители органических веществ. [c.191]

    Для R = Me реакция приводила к образованию третичных аминов. Стадия перегруппировки представляет собой процесс Sni, о чем свидетельствует сохранение конфигурации группы R. Эффективность метода возрастает с увеличением стабильности R+ как карбокатиона (что согласуется с ион-парной природой реакции S i, разд. 10.7). Следовательно, метод особенно полезен для приготовления третичных алкиламинов, которые труднодоступны иными методами. В другом косвенном методе первичные спирты превращают в перхлораты алкоксифосфония, которые в диметилформамиде эффективно моноалкилируют не только вторичные, но и первичные амины [673]. [c.149]

    Хлорная кислота НСЮ4 является одной из самых сильных неорганических кислот. Она может существовать в свободном виде, хотя и мало устойчива. Безводная хлорная кислота взрывается при нагревании и при соприкосновении с органическими веществами. Водные растворы ее стабильны. Соли хлорной кислоты называются перхлоратами, например КСЮ4 — перхлорат калия. Один из способов промышленного получения хлорной кислоты заключается в действии концентрированной серной кислоты на перхлораты  [c.124]

    Границы стабильности растворов. Предельный катодный потенциал для акрилонитрильных растворов ПТЭА (фоновый электролит) на КРЭ составляет -1,5 В по ПКЭ. Песомненно, что реакцией, лимитирующей стабильность, в данном случае является восстановление, обусловленное наличием ненасыщенной связи. Основным продуктом, служащим подходящим источником протона,. должен быть пропионитрил. Данные по анодной границе стабильности растворов акрилонитрила отсутствуют однако если использовать платину в качестве анода и перхлорат в качестве фонового электролита, то акрилонитрильный раствор должен оставаться стабильным при достаточно положительных потенциалах, так как нитрильная группа должна способствовать деактивации сопряженной связи в отношении процессов окисления. [c.14]

    Границы стабильности растворов. Области рабочих потенциалов на платиновых электродах исследовались Дюбуа и сотр. [3]. Они нашли, что в случае перхлоратов натрия, лития и тетраалкиламмония анодный предел стабильности наступает при 0,75 В относительно электрода Ag/0,01 н. AgNOз. Катодный предел зависит от природы катиона и концентрации воды. Наиболее широкая область была получена для растворов, содержащих ионы ГГ (катодный предел равен -3,6В), наименее широкая - для ионов Ка (-2,4В) и тетраалкиламмония (-1,1В). Природа предельного потенциала в анодной области не была исследована. Однако приведенное значение потенциала хорошо совпадает с потенциалом окисления четвертичных аминов. Катодная реакция включает разряд катионов. Низкое значение потенциала для ионов тетраалкиламмония необычно. Возможно, этот случай аналогичен наблюдаемому с нитрометаном, где низкий предел стабильности в катодной области связан с реакцией самого растворителя. [c.26]


    Границы стабильности растворов. Данные о доступной области потенциалов в растворах ДМСО приведены в табл. 11. Аналогичная картина наблюдалась для других растворителей. Следует отметить, однако, что K IO4 очень сильно растворяется. В этом растворе интервал потенциалов в анодной области такой же, как и в других перхлоратах или нитратах, между тем в катодной области интервал рабочих потенциалов шире по сравнению с другими соединениями, за исключением солей тетраалкиламмония. Соль K IO4 считается удобным электролитом, так как ее легко получить и хранить в чистом виде. [c.41]

    Производные Т.-светостабилизаторы полимеров (напр., ПВХ), конденсирующие агенты в синтезе полинуклеотидов, инициирующие ВВ (напр., тетразен и комплексы Т. с перхлоратами переходных металлов), регуляторы роста растений мн. производные Т.-физиологически аггивны. 1,5-Пентаметилентетразол (коразол)-лек. препарат, стимулирующий сердечную деятельность и деятельность центр, нервной системы. На основе непредельных производных Т. получены полимеры, обладающие термнч. стабильностью. [c.554]

    Электрохимическое посстановление многих ароматических нитрилов, включая бензонитрил, в ДМФА на фоне перхлората тетрапропиламмоиия позволило получить относительно стабильные анион-радикалы, спектры ЭПР которых были зафиксированы [99]. На полярограммах фталодинитрила в указанных условиях наблюдаются две одноэлектронные волны, и его электролиз прн контролируемом потенциале, равном потенциалу второй волны, приводит к отщеплению цианогруппы [c.384]

    Здесь уместно подчеркнуть, что реакционная способность и стабильность не всегда связаны обратной зависимостью. Пирилий-катион сравнительно стабилен так, например, его кристаллический перхлорат не разлагается при нагревании до 275° С. В то же время он отличается очень высокой реакционной способностью по отношению к нуклеофилам например, с водой он реагирует при комнатной температуре. К действительно неустойчивым следует отнести соединения, которые, даже будучи очищенными, расщепляются уже при комнатной температуре. Таков, в частности, озонид тетра-метилэтилена. [c.164]

    Соли пирилия, особенно перхлорат и гексахлорантимонат(У), являются стабильными и в то же время реакционноспособными соединениями. Они до сих пор не обнаружены в живом организме, тогда как бензопирилиевые соединения играют важнейшую роль в окраске цветков. Пирилиевые соли не нашли применения и в химиотерапии. [c.167]

    Перхлораты — соединения довольно стабильные, но в контакте с органическими соединеЕшями становятся огне- и взрывоопасными. [c.164]

    Соли рубидия и цезия, в анионе которых лигандом является кислород, обычно называют солями кислородсодержащих кислот. Анионы у солей кислородсодержащих кислот могут быть по своему строению тетраэдрическими (сульфаты, фосфаты, перманганаты, перренаты, хроматы, перхлораты, перйодаты), пирамидальными (сульфиты, хлораты, броматы, иодаты), плоскими, в виде правильного треугольника (нитраты, карбонаты) и, наконец, просто треугольниками (нитриты). Соли, анионы которых содержат элементы VII группы, плохо растворяются в воде и разлагаются прп нагревании с выделением кислорода. В большинстве случаев рубидиевые и цезиевые соли кислородсодержащих кислот не образуют кристаллогидратов при обычной температуре. Малоустойчивые в водных растворах сульфиты и нитриты рубидия и цезия йЛегко взаимодействуют с аналогичными соединениями переходных элементов, давая комплексные соединения, отличающиеся высокой стабильностью в растворе и, как правило, незначительной растворимостью в воде. [c.113]

    В случае необходимости плавиковую кислоту можно удалить упариванием с H2SO4 или H IO4. Однако применение этих кислот не желательно. В присутствии сульфат-иона в исследуемом растворе торий связывается в комплексный анион, в результате чего не достигается полнота осаждения тория иодатом, аммиаком и перекисью водорода кроме того, при анализе фосфатных пород и известняков, содержащих много кальция, образуются осадки сульфата кальция. Последние затрудняют последующее отделение тория от Zr и Ti плавиковой или щавелевой кислотой из-за образования нерастворимых двойных фторидов или двойных оксалатов циркония и кальция. Присутствие же в исследуемом растворе перхлоратов может привести к образованию стабильных эмульсий при экстракции органическими растворителями (например, этилацетатом) [578, стр. 11J. [c.162]

    Этот метод позволяет получать соединения (370 К = Ме, п-МеСбН4) в виде стабильных бесцветных твердых вешеств (с. в. — в. в.). При действии на них хлорной кислоты регенерируются перхлораты диазолия (369) обработка метилфторсульфонатом приводит к метилированию по экзоциклическому атому азота и образованию диазолиевых солей, которые охарактеризованы в виде перхлоратов [157]. [c.765]

    Катион пирилия обладает весьма интересными свойствами. Этот катион проявляет ароматический характер и, вследствие этого, как можно предположить, стабилен, тем не менее он обладает очень высокой реакционной способностью. Аналогичные свойств характерны для катиона тропилия и циклопентадиениль-ного аниона. Тот факт, что катионы пирилия легко реагируют с нуклеофильными реагентами с образованием неароматических соединений, свидетельствует лишь об их относительной стабильности если же такие катионы не были бы ароматическими, весьма сомнительно, что они вовсе существовали бы. Перхлорат пирилия — соединение, обладающее удивительной стабильностью, он не разлагается при нагревании до температуры ниже 270 С, в то же время легко реагирует с водой даже при комнатной температуре с образованием неароматических соединений. [c.198]

    Соли пирилия [1,2], особенно перхлораты, тетрафторбораты и гексахлорани-монаты(У), представляют собой стабильные, но весьма реакционноспособные соединения. Чаще других используются перхлораты пирилия, поскольку они умерено растворимы. При использовании перхлоратов необходимо соблюдать осторожность, так как они, особенно в сухом состоянии, склонны разлагаться со взрывом. Катионы пирилия не обнаружены в живых организмах, хотя бен-зо[Л]пирилиевые системы присутствуют в пигментах растений (разд. 9.1.6). [c.201]

    Количественной мерой стабильности карбокатионов является величина рК > (гл. 9). Катион трифенилциклопропенилия характеризуется величиной рКд., равной +3,1, а для незамещенного катиона циклопропенилия рКк+ = -7,4, т.е. он менее стабилен. Перхлорат 1,2,3-три-от/ г/я-бутилциклопропенилия (рКл+= 7,2) настолько устойчив, что его очищают перекристаллизацией из воды. [c.344]

    Две другие возможности стабилизации органических ионов связаны с факторами внешней среды, в которых находятся активные частицы. Важнейшим из таких факторов являтся природа противоиона. Если противоион обладает низкой реакционной способностью и (что часто взаимосвязано) высокой де-локализацией заряда, то это затрудняет его ассоциацию с органическим ионом с образованием ковалентной связи и повышает стабильность такой ионной системы. В этом смысле хорошими противоионами для карбокатионов являются анионы типа перхлората (39) или трифлата (40), а также такие координационно насьпценные анионы, как тетрафторборат (41), гексахлорантимонат [c.94]


Смотреть страницы где упоминается термин Стабильность перхлоратов: [c.231]    [c.267]    [c.267]    [c.454]    [c.74]    [c.335]    [c.304]    [c.362]    [c.95]    [c.466]    [c.94]    [c.965]    [c.499]    [c.281]    [c.266]    [c.404]    [c.465]    [c.76]    [c.83]    [c.629]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Перхлораты



© 2024 chem21.info Реклама на сайте