Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы перхлораты

Таблица 8-5 Растворимость перхлората аммония и щелочных металлов в органических растворителях [5] Таблица 8-5 <a href="/info/149200">Растворимость перхлората аммония</a> и <a href="/info/6862">щелочных металлов</a> в органических растворителях [5]

    В табл. 8-5 указана растворимость перхлоратов щелочных металлов и аммония в некоторых органических растворителях при 25 °С. [c.432]

    Среди солей хлорной кислоты наибольшее распространение получили перхлораты щелочных металлов и аммония. Перхлораты используются в пиротехнике и фотографии, а также в качестве компонентов при изготовлении взрывчатых веществ п ракетного топлива. Преимущество перхлората аммония по сравнению с другими перхлоратами состоит в том, что при взаимодействии с углеродом в первом случае образуются только газообразные вещества, а во втором — также и твердые. [c.191]

    Соединения, в состав которых входят элементы с промежуточной степенью окисления, при определенных условиях подвергаются дис-пропорционированию, или дисмутации. Это реакция превращения одного соединения в два новых, в одном из которых элемент имеет более высокую степень окисления, чем в исходном, а в другом — более низкую. Так, при нагревании сульфита щелочного металла или бертолетовой соли при отсутствии катализатора образуются сульфат и сульфид или хлорид и перхлорат калия  [c.24]

    Различное влияние, оказываемое органическими растворителями на неорганические соединения, часто используют в анализе. Например, хлорид лития можно отделить от галогенидов других щелочных металлов экстракцией спиртом или эфиром. Метод количественного определения калия в виде перхлората основан на том, что его растворимость уменьшается при добавлении спирта, а перхлорат натрия при этом переходит в раствор. Хлориды и нитраты щелочноземельных металлов можно разделить смесью спирт-1-эфир. [c.197]

    Условия электрохимического окисления спиртов весьма разнообразны. Анод может быть изготовлен из платины [34—37], никеля [38—40], свинца [41 42] или графита [43]. Направление процесса и выход продуктов окисления зависят не только от материала анода, но и от природы растворителя и электролита. Алифатические спирты окисляются в водных [30—32] и ацетонитрильных [36, 43] растворах, а также в безводных спиртах, содержащих в качестве электролитов алкоголяты щелочных металлов, перхлорат натрия или тетра-фторборат тетрабутиламмония [33, 44]. Последний, наряду с перхлоратом лития, служит электролитом и в ацетонитрильных растворах [36, 37]. Вводных растворах окисление спиртов может происходить в присутствии как щелочей, так и минеральных кислот, главным образом серной и хлорной. [c.270]


    Л —хлоридов и бромидов щелочных металлов в воде Б —перхлоратов элементов подгруппы бериллия в воде и метаноле В —бромидов и хлорида лития в воде при равных концентрациях. [c.237]

    Полимеры с сопряженными связями Галогениды, силикаты, сульфаты щелочных металлов Перхлораты, хлораты, нитраты щелочных металлов Насыщенные полимеры [c.231]

    Поэтому не будем на этом останавливаться и предположим, что электролит полностью диссоциирован и, таким образом, раствор содержит только ионы и нейтральные молекулы воды. Это предположение выполняется с достаточной точностью, в частности, для разбавленных растворов галогенидов и перхлоратов щелочных металлов, щелочноземельных металлов и некоторых переходных металлов. Впрочем, учет присутствия нейтральных молекул электролита не представляет трудности. [c.240]

    Перхлораты щелочных металлов получают либо нагреванием соответствующих хлоратов, либо окислением их электрическим током  [c.610]

    Размеры иона лития наименьшие в подгруппе щелочных металлов. Следствием этого является сильная гидратация этого иона в водных растворах. Несомненно, что хорошая растворимость некоторых солей лития (например, перхлората) в воде, спиртах, эфирах связана с энергичной сольватацией этого иона. Литий склонен к образованию ковалентных связей. В парах при высоких температурах около 1 % атомов лития существуют в виде двухатомных молекул, причем для связи в Ыг используются 25-электроны. По некоторым данным функции 5-типа не являются в таких молекулах чистыми и содержат примесь р-функций. [c.152]

    Соли хлорной кислоты так же, как и хлорная кислота, — соединения, богатые кислородом. Многие перхлораты в отличие от хлорной кислоты обладают достаточной стабильностью. Такие соли, как перхлораты щелочных металлов и, главным образом, перхлорат аммония широко используются в качестве окислителей для ракетных топлив и в пиротехнике. Перхлораты щелочноземельных металлов обладают высокой гигроскопичностью, поэтому они обычно не применяются ни в ракетной технике, ни для пиротехнических целей. Перхлорат магния широко используется как очень эффективный осушитель. [c.432]

    Растворимость большинства соединений довольно резко изменяется с изменением свойств растворителя, т. е. при прибавлении в водные .расгйорь1 о гаш ческих растворителей Т1ли при замене воды на органический растворитель. Например, растворимость ряда солей понижается при введении в раствор спиртов, ацетона и т. п., так Са804 заметно растворим в воде, добавление же 50 объемн.% этанола приводит к практически полному осаждению этсго соединения. Некоторые соли щелочных металлов—перхлорат [c.83]

    В качестве растворителя этилендиамин особенно интересен для катодного восстановления неорганических соединений. Важно то, что этилендиамин весьма схож с аммиаком. Так, например, в нем могут образовываться растворы электронов, а ртуть может служить электронным электродом. По сравнению с аммиаком этилендиамин находится в жидком состоянии в более удобной для работы области температур (11-117°С) и имеет относительно низкое давление паров при комнатной температуре (-10 мм). Несмотря на низкую диэлектрическую постоянную (12), этилендиамин растворяет с одинаковым успехом как органические, так и многие неорганические соединения, особенно перхлораты и нитраты. Подобно аммиаку, этилендиамин не совсем подходит для проведения реакции электролитического окисления, однако для восстановительных процессов он вполне пригоден. Так, в этой среде можно исследовать полярографическое восстановление ионов щелочных металлов от лития до цезия и аммония [c.24]

    Рассмотрение спектров поглощения перхлоратов и нитратов главным образом щелочных металлов дает возможность сделать следующие заключения. В их спектрах имеются все разрешенные по симметрии полосы, соответствующие колебаниям анионов МОэ и СЮ4 [173, 195— 200] (рис. 26). [c.60]

    Это показывает, что нитраты и перхлораты щелочных металлов лучше всего подходят на роль инертных электролитов для поддержания постоянной ионной силы. [c.164]

    Перхлораты — соли хлорной кислоты, в отличие от последней довольно устойчивы. Перхлораты щелочных металлов, особенно перхлорат аммония, используются в качестве окислителей в пиротехнике и для реактивных топлив. Перхлорат магния — один из. лучших осушителей газов от влаги. [c.159]

    Увеличивается производство жидкого хлора, хлоридов алюминия, кремния, титана, железа, цинка и хлоридов других металлов, применяемых в менее широких масштабах. Развивается производство хлоратов натрия, магния и калия, вырабатываются в значительных количествах хлораты, кальция и перхлораты щелочных металлов и аммония. [c.7]

    Хлорид натрия использован в качестве весовой формы при гравиметрическом определении натрия в присутствии щелочных металлов [1021. Предварительно хлориды щелочных металлов превращают в перхлораты, затем экстрагируют и-бутанолом и этилацетатом перхлораты натрия и лития и отделяют их от калия, рубидия и цезия. Экстракт упаривают до удаления этилацетата и осаждают натрий в форме хлорида н-бутанолом, насыщенным хлористым водородом, отделяя натрий от лития. [c.56]


    В качестве нейтральной соли применяют также другие 1 1-электролиты щелочных металлов. Перхлорат лития применяется в тех случаях, когда в щироких пределах варьируется концентрация водородных ионов см. J. Ат. hem. So ., 75, 5659 (1953). [c.18]

    Хлориды щелочных металлов Перхлораты лития и натрия Карбонаты щелочных металлов 2-Этилгексанол Этанол (метанол), насыщенный газообразным НС1 Этанол или бутанол + газообразный НС1 Этанол -f- вода (1 1),насыщенные Lia Og Li Li, s Li Li Na,K,Rb, s Na,K,Rb Na Na,К [102, 529, 833 1389, 1406] [9, 1233] [764] [353] [c.54]

    В качестве фона часто применяют хлориды, хлораты, перхлораты щелочных и щелочноземельных металлов, сульфаты щелочных металлов, карбонаты натрия и калия, четвертичные аммониевые основания и их соли, щелочи (особенно гидроокись лития). При применении солей лития в качестве фона рабочая область напряжений увеличивается до —2 В, а в случае применения солей тетралкиламмония до —2,6 В [по отношению к насыщенному каломельному электроду (н.к.э.)], [c.124]

    Кислородсодержащие кислоты хлора образуют соответствующие соли, например гипохлорит натрия N3001, хлорит калия КСЮ2, хлорат калия (бертолетова соль) КСЮз, перхлорат магния М (СЮ4)г. Соли хлорноватистой кислоты (гипохлориты) и хлористой (хлориты) в свободном состоянии неустойчивы и являются сильными окислителями в водных растворах. Растворы хлоратов и перхлоратов щелочных металлов, напротив, устойчивы, показывают нейтральную реакцию и не проявляют окислительных свойств. Хлораты и перхлораты могут быть выделены в свободном состоянии. [c.106]

    Большинство солей щелочных металлов растворимо в воде. Сульфат магния хорошо растворим (отличие от щелочноземельных металлов). Карбонат магния не осаждается в присутствии гидроокиси и хлорида аммония, поэтому не выделяется вместе с щелочноземельными металлами в виде карбоната. Растворимость карбоната магния 10 - моль л, т. е. больше, чем карбонатов Са, 5г, Ва. Щелочные металлы образуют сильные щелочи. Нитрокобальтиаты натрия, магния и щелочноземельных металлов растворимы в воде. Нет общего группового реактива на 1-ю аналитическую группу. Однако калий, аммоний, рубидий, цезий образуют малорастворимые гексанитрокобальтиаты, перхлораты, хлороплатинаты и гидротартраты. Га-логенидные соли щелочных металлов начинают испаряться только при 1000 °С их пары окрашивают пламя горелки. Соли аммония легко летучи при прокаливании и разлагаются около температуры красного каления. [c.159]

    Стандартные характеристики растворенного вещества согласно общепринятому выбору стандартного состояния относятся к гипотетическому одномоляльному раствору, обладающему свойствами бесконечно разбавленного, т. е. к нулевой ионной силе, а химический эксперимент проводится при конечных концентрациях реагентов. Изучение равновесий, как правило, проводится в растворах с постоянным и довольно высоким значением ионной силы, причем полученные значения констант равновесия и тепловых эффектов далеко не всегда пересчитываются на нулевую ионную силу. Термодинамические характеристики реакций комплексообразования при конечных значениях ионной силы оказываются несопоставимыми с основными стандартными характеристиками ионов, фигурирующими в справочной литературе, что закрывает путь для многих расчетов и сопоставлений. Термодинамические характеристики для растворов с конечным значением ионной силы часто оказываются несопо-ставимыми и между собой, так как каждый исследователь выбирает значение ионной силы раствора и электролит для ее поддержания в значительной степени произвольно, используя чаще всего нитраты или перхлораты, а иногда хлориды щелочных металлов. [c.260]

    Пиротехнические составы (ПС) до недавнего времени представляли интерес лишь в качестве зарядов, реализующих под действием лазерного излучения исключительно процессы горения (стационарного или взрывного) и, следовательно, не могли использоваться в лазерных цепях подрыва, основанных на детонационных режимах. Первыми композициями такого класса являются смеси на основе перхлората аммония и гипофосфитов аммония и щелочных металлов, разработанные на кафедре высокоэнергетических процессов СПбГТИ(ТУ) и защищенные патентом РФ № 2119903. Указанные композиции устойчиво детонируют под действием лазерного излучения, как в режиме модулированной добротности, так и свободной генерации и транслируют процесс детонации при малых критических диаметрах (1,5-2,0 мм). Однако к недостаткам этих композиций следует отнести достаточно высокий порог лазерного инициирования, который составляет 1,5-6,0 Дж/см , что существенно ниже порога инициирования бризантных ВВ, но выше порога инициирования штатных ИВВ. [c.150]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    Пресс-материалы иа основе феиольиых и крезольных смол устойчивы к действию всех неокнсляющих неорганических и органических кислот любой концентрации, растворов солей, а также большинства органических растворителей вплоть до температуры 140 С. Они нестойки или ограниченно стойки к действию сильных щелочей и окислителей, таких как азотная и хромовая кислоты, серная кислота (концентрацией выше 70%), водный раствор хлора, раствор гипохлорита щелочного металла, хлорит, хлорат и перхлорат натрия, перманганат калия. Стойкость этих материалов к действию растворителей, таких как ацетон и дихлорметан, также невелика [12]. [c.266]

    ДМСО - очень полярная, ассоциированная жидкость, которая сильно сольватирует многие неорганические ионы. Находится в жидком состоянии в области температур от 18 до 189 °С. В целом в нем очень хорошо растворяются иодиды, бромиды, хлориды, перхлораты и нитраты. Фториды, сульфаты и карбонаты не растворяются. Как это обычно бывает в неводных растворах, из солей щелочных металлов лучше всего растворяются соли лития, а хуже - соли калия. Однако КСЮ4 достаточно растворим, чтобы использовать его в качестве [c.39]

    Т.- кристаллы, обычно изоморфные с перхлоратами. При нагр. диссоциируют с отщеплением ВР3. Т. щелочных и мн. тяжелых металлов раств. в воде. Свежеприготовленные водные р-ры Т. щелочных металлов имеют нейтральную р-цию. В этих р-рах происходит медленный гидролиз с образованием в первую очередь ионов пщроксифторобората [ВР3ОН] . Только в очень разб. р-рах наблюдается дальнейший гидролиз с образованием ионов [ВР2(ОН)2]". [c.204]

    Закономерности электромифации ионов в расплавах солей исследованы в значительно меньшей степени, чем в водных р-рах. Обычная среда и проведении электромифации в расплавленных солях безводные расплавы нитратов и перхлоратов щелочных металлов или эвтектич. смеси, имеющие сравнительно низкую т-ру плавления. [c.436]

    В качестве инертных электролитов наиболее часто используются перхлораты и нитраты. Обычно они имеют исключительно слабую тенденцию вступать в реакции комплексообразования. Их соли, имеющие в качестве катионов ионы щелочных металлов, хорошо растворимы в веще (кроме КС104)- На основе этих солей могут быть приготовлены растворы с ионной силой > 3,0 моль/л. [c.136]

    Знание характеристик растворителя и растворенного вещества позволяет химику устанавливать ряд правил, которые полезны при использовании равновесий осаждения. Так, полезно знать, что все нитраты, большинство перхлоратов ( КСЮ4 и НН4С104 —исключения) и почти все соли щелочных металлов очень хорошо растворимы в воде. [c.200]

    Хлорная кислота может служить удобным сырьем для получения различных неорганических и органических перхлоратов. Путем нейтрализации хлорной ислоты можно получать перхлораты любых металлов, гидразина и других органических оснований. Для большого числа перхлоратов, выпускаемых в ограниченном масштабе и используемых в качестве реактивов, производство их через хлорную кислоту наиболее удобно и экономично. Однако, например, перхлорат висмута не может быть получен взаимодействием металлического висмута с концентрированной НСЮ4, так как реакция проходит со взрывом [54]. В определенных условиях реакция нейтрализации хлорной кислоты соответствующими основаниями может оказаться целесообразной не только для получения перхлората магния, алюминия, бериллия и других металлов, но также и для получения перхлоратов щелочных металлов и аммония. [c.426]

    Наиболее удобно получение перхлоратов и хлорной кислоты путем анодного окисления ионов lOa или СГ в водных растворах. При прямом получении хлорной кислоты электролизу подвергаются растворы соляной кислоты или хлора, а при полпенни ее через перхлораты проводят электрохимическое окисление водных растворов хлоратов щелочных металлов с последующей обработкой образующегося перхлората сильной минеральной кислотой. [c.427]

    Все перхлораты щелочны1 и щелочноземельных металлов, кроме перхлоратов калия и аммония, образуют гидраты. Из перхлоратов щелочных металлов наиболее гигроскопичен перхлорат лития, гигроскопичны также соли щелочноземельных металлов. С аммиаком перхлораты образуют аммиакаты различного состава. [c.434]

    Из многочисленных вариантов проведения обменного разложения перхлоратов щелочных металлов с солями аммония промышленное применение получил только обмен с хлористым аммонием, а также обработка перхлората натрия соляной кислотой и аммиаком. Разделению продуктов реакции — NH4 IO4 и Na l — способствует более сильная температурная зависимость растворимости NH4 IO4 в воде по сравнению с зависимостью растворимости поваренной соли [133]. [c.451]


Смотреть страницы где упоминается термин Щелочные металлы перхлораты: [c.305]    [c.106]    [c.74]    [c.228]    [c.451]    [c.304]    [c.498]    [c.499]    [c.542]    [c.439]    [c.189]    [c.62]    [c.33]   
Курс неорганической химии (1963) -- [ c.864 ]

Основы общей химии Том 3 (1970) -- [ c.26 , c.34 ]

Курс неорганической химии (1972) -- [ c.773 ]




ПОИСК





Смотрите так же термины и статьи:

Перхлораты

Перхлораты металлов



© 2024 chem21.info Реклама на сайте