Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дополнение Д. Явления переноса

    Для описания явлений четвертого уровня иерархической структуры ФХС могут быть использованы методы статистической теории механики суспензий, гидромеханические модели, основанные на представлениях о взаимопроникающих многоскоростных континиумах, методы механики взвешенных, кипящих дисперсных систем модели, построенные на основе математических методов кинетической теории газов, и др. В частности, для ФХС с малыми параметрами (давлениями, скоростями, температурами, напряжениями и т. д.) при описании процессов в полидисперсных средах эффективен прием распространения метода статистических ансамблей Гиббса на совокупность макровключений (твердых частиц, капель, пузырей) дисперсной среды. Та или иная форма описания стохастических свойств ФХС, дополненная детерминированными моделями переноса массы, энергии импульса в пределах фаз, в итоге приводит к общей математической модели четвертого уровня иерар- [c.44]


    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]

    Дополнения, в которых кратко изложены основы термодинамики, статистической механики, явлений переноса и химической кинетики, позволяют читателю нри работе с книгой сократить до минимума обращение к дополнительной литературе. [c.13]

    При исследовании горения обычно рассматриваются течения газов, в которых важную роль играют явления переноса и химические реакции. Поэтому при изучении теории горения необходимо, кроме знания элементарной термодинамики, обладать пониманием гидродинамических уравнений сохранения, записанных с учетом явлений переноса и химических реакций. Читателям, не знакомым с этими вопросами, автор рекомендует прочесть дополнения, прежде чем приступать к чтению первой главы. [c.15]


    В следующем параграфе кратко анализируются столкновения молекул, что позволяет дать определение величин, которые входят в точные формулы для коэффициентов переноса. В 3 рассматривается диффузия, и это рассмотрение не связывается с рассмотрением других явлений переноса, так как оказалось [ ], что при несколько ином подходе к явлению диффузии достигается более хорошее согласие с точной теорией. Далее, в 5 и 6 проводится общее рассмотрение явлений переноса применительно к явлениям вязкости и теплопроводности, в котором используется понятие о средней длине свободного пробега. В конце Дополнения вводятся и обсуждаются безразмерные отношения коэффициентов переноса, которые часто появляются в задачах горения. Система обозначений в настоящем Дополнении такая же, как и в Дополнении Г. [c.554]

    В 2.3 было показано, что в смеси газов средняя скорость молекул какого-либо одного компонента может не совпадать с гидродинамической скоростью. Разность скоростей представляет собой диффузионную скорость выделенного компонента смеси. Из-за диффузионных процессов смеси, очевидно, являются более сложными системами, чем простые газы. Тем не менее для газовой смеси общая задача расчета функции распределения по скоростям решается методом, аналогичным используемому для простого газа. Оказывается, что сложный состав приводит к появлению двух новых явлений переноса (в дополнение к вязкости и теплопроводности) диффузии и термодиффузии. Кинетические коэффициенты, характеризующие эти явления, называются коэффициентами диффузии и термодиффузии они связывают скорость диффузии с градиентами плотности числа частиц и температуры соответственно, В последующих параграфах методом Чепмена—Энскога будут получены первые приближения для векторов потоков в смеси газов, состоящей из К компонентов как и ранее, при этом предполагается, что у молекул нет внутренних степеней свободы. [c.168]

    Форма описания стохастических свойств процесса кристаллизации, дополненная детерминированными моделями переноса массы, импульса и энергии, в итоге должна привести к общей математической модели четвертого уровня иерархии процесса кристаллизации. Уравнения первого, второго, третьего и четвертого уровней иерархической структуры эффектов процесса кристаллизации входят составной частью в математическое описание явлений пятого уровня, как математическое описание подсистем всей системы в масштабе кристаллизатора. Практика показала, что это описание прежде всего должно быть достаточно удобным и простым. Поэтому информацию, поступающую с нижних уровней, необходимо максимально сжать и подать на верхний уровень в достаточно простой и компактной форме. Сжатие информации достигается оценкой порядка малости величин, входящих в описания нижних уровней  [c.12]

    Весьма эффективным в этом отношении является принципиально иной, теоретико-вероятностный метод решения, свободный от недостатков метода конечных разностей. Кроме того, вероятностный подход к исследованию процессов переноса является хорошим дополнением к другим методам исследования и особенно оправдан тогда, когда физическая природа моделируемых явлений сама подсказывает их стохастическую интерпретацию [39-41]. В основе этого подхода лежит построение случайного процесса (случайного блуждания), согласованного со статистикой элементарных актов взаимодействия переносимых частиц со средой. Специальным образом построенные функционалы от этого процесса удовлетворяют уравнению переноса. В настоящее время известна связь гиперболических уравнений с марковскими процессами [41], на основе [c.665]

    Когда же существенное отношение, лежащее в основе физического или химического явления, установлено в форме общего закона, тогда центр тяжести научного исследования переносится на те самые отклонения и побочные влияния, которыми ученые по необходимости пренебрегали на первом этапе исследования как несущественными деталями тогда в основное выражение закона вводятся поправки и дополнительные члены, причем ясно, что прежде чем их вводить, надо было установить то, к чему можно было вносить поправки и дополнения понятно, поэтому, что на новом этапе исследования грубость приборов становится уже решающим недостатком естествоиспытателя. [c.240]

    Структура книги и метод изложения требуют некоторых пояснений. Чтобы как можно скорее приступить к изложению основного материала, я исхожу из того, что читатель обладает основами знаний, необходимыми для понимания теории горения. Предполагается знание математики (главным образом полное понимание дифференциальных уравнений, обг.гкновенных и в частных д роизводных), термодинамики, статистической механики, химической кинетики и теории явлений переноса. Чтобы помочь читателю, недостаточно хорошо ориентирующемуся в этих областях, а также для того, чтобы освободить текст от детального вывода исходных уравнений, книга снабжена подробными дополнениями, в которых содержится обзор сведений по термодинамике и статистической механике, по химической кинетике, по уравнениям гидродинамики и явлениям переноса. [c.12]


    Нет смысла более подробно останавливаться на деталях данной системы формализации знаний, поскольку они подробно освещены в отдельном издании настоящей серии по системному анализу процессов химической технологии [9]. Отметим только, что этот подход основан на формулировке обобщенной системы уравнений переноса массы, энергии, импульса, момента импульса, электрического и магнитного заряда с учетом всех возможных видов превращений вещества и энергии (исключая внутриатомные), преобразовании обобщенной системы уравнений переноса с помощью локального варианта уравнения Гиббса, получении на этой основе обобщенной диссипативной функции физико-химической системы, декомпозиции обобщенной диссипативной функции на все возможные виды диссипации энергии, введении диаграммной символики для каждого вида диссипации и дополнении этой символики диаграммным изображением сопутствующих явлений недиссинатив- [c.226]

    При работе над вторым изданием данного учебника авторы считали своей основной задачей дополнить его теми разделами, которые особенно остро необходимы для создания у будущих спе-циалистов-биологов полного фундамента физико-химических знаний. С этой целью написаны две новые главы — о процессах переноса (с главным акцентом на процессы диффузии, седиментации и электрической проводимости, гл. XVIII) и о поверхностных явлениях и дисперсных системах (составляющих предмет специального раздела физической химии, часто называемого коллоидной химией, гл. XVII). Кроме того, в гл. VIII (строение макроскопических систем) введен параграф ( 8.5) о высокомолекулярных соединениях. Остальные изменения представляют собой небольшие дополнения, уточнения в формулировках и некоторые перестановки, неизбежные при введении нового материала. При этом был учтен опыт работы с первым изданием и пожелания коллег. [c.4]

    Работа ТЭ с жидким свободны.м электролитом иногда сопровождается появлением газовых пузырьков в при-злек 1 родном пространстве. Увеличение объема газовой фазы в электролите всегда нежелательно, а в некоторых случаях полностью определяет возмол<ную продолжительность работы топливного элемента. Очевидно, что в случае гидрофильного запорного слоя это явление может быть связано с нарушением нормальной работы запорного слоя электрода, когда часть его пор свободна от жидкости, образуя сквозной канал для пробульки-вающего газа. Общие условия появления сквозных газовых пор обсуждаются, в частности, в [3.34]. В дополнение к пробулькиванию описаны также механизмы диффузионного и миграционного натекания. Последнее связано с явлением капиллярного гистерезиса. Периодическое изменение давления (или условий смачивания) приводит к появлению защемленных жидкостью пузырей таза, которые, совершая хаотические блуждания, могут проникать в электролитную камеру. Практически уда- ется полностью избавиться от пробулькивания и миграционного натекания выбором технологических и эксплуатационных параметров. Диффузионное натекание, происходящее за счет переноса газа в растворенном состоянии через иоры, заполненные жидкостью, было исследовано в [3.35]. [c.158]

    Во второй главе это соотношение используется для описания массоэнергопереноса в процессах гетерогенного катализа, диффузионной обработки пористых тел, адсорбции, мембранных процессах, а также в некоторых электрохимических процессах, В последние годы в различных областях науки делаются попытки разработать методологию построения количественных теорий сложных систем. При этом термин сложные системы используется не только для того, чтобы отметить многообразие элементов системы и разнообразие связей между элементами. Часто он подчеркивает недостаточность имеющейся эмпирической информации и надежно обоснованных теоретических заключений о характере и механизмах связей между элементами системы для разработки исчерпывающей количественной теории, которая позволила бы надежно прогнозировать поведение исследуемой системы во всем множестве допустимых ситуаций. В тех случаях, когда уровень теоретических и экспериментальных знаний не дает возможности сформулировать адекватное математическое описание процесса или системы в форме набора уравнений переноса с соответствующими начальными и граничными условиями, исследователь вынужден использовать методы разработки эмпирических уравнений. Необходимым дополнением к методам эмпирических уравнений является диаграммная техника причинного анализа, которая не только позволяет детально проанализировать внутреннюю причинно-следственную структуру исследуемого явления или процесса, но и дает возможность количественно оценить интенсивность причинных воздействий между различными элементами системы или этапами процесса. Направления причинных воздействий в системе совпадают с направлениями потоков вещества, энергии и информации, поэтому диаграмма причинно-следственных отношений для исследуемого объекта по существу является диаграммой потоков переноса. Часть первой главы книги посвящена одному из методов причинного анализа — информационному моделированию процессов массоэнергопереноса в сложных системах, [c.9]

    Необходимым дополнением к методам эмпирических уравнений является диаграммная техника причинного анализа, которая не только позволяет детально проанализировать внутреннюю причинно-следствепную структуру исследуемого явления или процесса, но и дает возможность количественно оценить интенсивность причинных воздействий между различными элементами системы или этапами процесса. Направления причинных воздействий в системе совпадают с направлениями потоков вё-щества, энергии и информации, поэтому диаграмма причинно-следственных отношений для исследуемого объекта по сушеству является диаграммой потоков переноса. [c.47]


Смотреть страницы где упоминается термин Дополнение Д. Явления переноса: [c.552]    [c.457]    [c.496]   
Смотреть главы в:

Теория горения -> Дополнение Д. Явления переноса




ПОИСК





Смотрите так же термины и статьи:

Дополнение

Явления переноса



© 2025 chem21.info Реклама на сайте