Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каков состав продуктов сгорания бензина

    Каков состав продуктов сгорания бензина  [c.32]

    Способы подачи дизельного топлива в камеру сгорания, образование рабочей смеси и процессы горения не менее, а более сложны, чем в современном карбюраторном двигателе. Поэтому существующее еще у некоторых работников представление о дизельном топливе как о продукте, в состав которого могут входить соответствующие фракции почти любой нефти, не имеет ничего общего с истинным положением дела и должно быть решительно изменено. При производстве дизельных топлив, в частности при установлении основных их параметров, должна быть проявлена такая же тщательность и требовательность, как и при производстве высококачественных моторных бензинов. [c.7]


    Детонационные свойства углеводородов. Как мы увидим дальше (стр. 60), углеводороды входят в состав бензинов, являющихся горючим для двигателей внутреннего сгорания. В последних пары горючего подвергаются максимальному сжатию при воспламенении входящие в его состав углеводороды мгновенно разлагаются со взрывом, образуя продукты полного сгорания ( Oj, пары НаО). Однако этот процесс может сопровождаться так называемой детонацией, т. е. преждевременным взрывом горючего до достижения максимального сжатия. При этом происходит неполное сгорание (с образованием СО, Па и осколков углеводородов), энергия топлива используется не нацело, нарушается ритм работы двигателя. Выяснено, что детонационные свойства углеводородов зависят от их строения чем больше разветвлена цепь углеводорода (т. е. чем больше в его молекуле третичных и четвертичных углеродных атомов), тем меньше он склонен к детонации и тем выше его качество как горючего чем меньше разветвлена цепь, тем склонность к детонации больше. Так, высокими антидетонационными свойствами обладает входящий в состав бензинов углеводород [c.55]

    Изменение излучательной способности продуктов сгорания бензола, бензина и гептана по высоте ламинарного диффузионного пламени показано на рис. 1.6. С увеличением расстояния от поверхности образца уменьшается толщина ламинарного диффузионного пламени, изменяется температура и состав продуктов сгорания, что и определяет характер кривых рис. 1.6. Как видно, излучательная способность пламен ароматических соединений (бензола) значительно выше излучательной способности пламен алифатических соединений (гептана). [c.23]

    Успехи органической химии связаны с эффективностью методов, применяемых для разделения и идентификации органических соединений. Для некоторых целей можно прекрасно использовать неочищенные смеси органических соединений например, смесь соединений, содержащихся в нефти, используется в двигателях внутреннего сгорания (бензин). Однако в других случаях важно, чтобы органическое соединение было абсолютно чистым, например если оно используется как добавка к пище или как фармацевтический препарат. Даже в тех случаях, когда в качестве конечного продукта используется смесь, обычно проводят ее частичное разделение, удаляя нежелательный компонент. (Например, бензин — гораздо менее сложная смесь, чем сырая нефть, из которой его получают.) В любом случае всегда желательно знать состав смеси. Кроме того, для идентификации неизвестных соединений существенно иметь чистое соединение, чтобы избежать ошибок, связанных с информацией, обусловленной примесями. Получив чистое соединение, по спектрам и другими методами можно установить его строение. [c.56]


    В настоящее время в продаже имеется большое количество различных специальных продуктов, которые рекомендуются изготовителями этих веществ в качестве растворителей для очистки двигателей внутреннего сгорания от осадков. Другие продукты предназначаются для смазки верхней части цилиндров двигателей и клапанов, а также в качестве промывочных масел, добавок, улучшающих смазывающую способность масел, и др. В результате анализа около 150 подобных продуктов установлено, что состав их различен. Многие из них содержат в качестве основных компонентов легкий бензин, керосин, дизельное топливо или маловязкое смазочное масло. Другими составляющими этих продуктов могут быть метиловый, этиловый и высшие спирты такие ароматические растворители, как бензол, ксилол, нитробензол, ароматические нефтяные дистилляты или дистилляты каменноугольной смолы хлорированные продукты — хлорнафталин, хлор-дифенилоксид, четыреххлористый углерод, трихлорэтилен, хлорбензол, дихлорэтан или хлорированные нефтяные дистилляты. В некоторых случаях в состав указанных продуктов добавляют скипидар, этилацетат, ацетон, графит, миканит, нафталин и др. часто добавляют красители и душистые вещества иногда в указанных выше продуктах находят нежелательные составные элементы — олеиновую кислоту, нафтенат свинца, стеарат алюминия и другие мыла, а также животные и растительные масла. [c.489]

    Целевым продуктом крекинга является прежде всего крекинг-бензин, представляющий собой после соответствующей очистки (ч. III) прекрасное топливо для двигателей внутреннего сгорания. Не только выходы этого продукта, но и его состав в высокой степени зависят от оформления крекинг-процесса и от таких факторов, как температура, давление, сырье и т. п. [c.414]

    Наоборот, для предотвращения чрезмерно замед-ленного сгорания на дроссельных режимах практика выработала такое регулирование состава рабочей смеси, при котором но мере снижения нагрузки происходит все большее обогащение смеси топливом и, соответственно, возрастает дефицит воздуха по сравнению с количеством, необходимым для полного сгорания. Это существенно изменяет состав сгоревшего газа в нем становится все меньше продуктов полного сгорания (НоО, СО2), все больше продуктов неполного сгорания (СО) и, что особенно важно, среди них много продуктов термического распада молекул исходного бензина. Это углеводородные молекулы, состоящие из 6—8 углеродных атомов. При их распаде образуются более мелкие молекулы ненасыщенных углеводородов, таких, как этилен НоС = СН2 или ацетилен НС = СН, а также водород. [c.154]

    Приведенная методика позволяет получить сведения о параметрах продуктов сгорания многокомпонентных топливовоздушных смесей. С помощью данного метода, автором работы с группой сотрудников был выполнен расчет состава продуктов сгорания и показателей теоретического цикла поршневого ДВС с изохорным подводом теплоты при использовании в качестве топлива бензина, водорода и бензоводородиой смеси, содержащей от 0,05 до 0,9 массовых долей суммарного состава топлива. Расчет проводился на ЭВМ БЭСМ-6 для изохорного горения топливо воздушных смесей с коэффициентом избытка воздуха а = 1 5 с шагом 0,1 —0,5. Широкий диапазон состава топливовоздушных смесей позволил выявить влияние как типа топлива, так и избытка окислителя на энергетические параметры теоретического цикла и состав продуктов сгорания. [c.30]

    При длительных испытаниях полноразмерного двигателя на стенде установлено, что на бензине с 0,8 г кг ЦТМ свечи зажигания без чистки от нагара могут работать всего лишь около 29 ч. Естественно, такая продолжительность работы неприемлема для. условий эксплуатации автомобильного транспорта. Введение в состав марганцевого антидетонатора выносителя — бромистого этила (для выноса продуктов сгорания марганца — "позволяет продлить работоспособность свечей зажигания без их очистки в среднем до 60—70 ч [101]. Еще лучший эффект оказало добавление к ЦТМ такого соединения, как бис-этилксантоген (СвНю0254). В его присутствии продолжительность работы свечей без чистки возрастает до 89 ч. Следует отметить, что улучшение работы свечей зажигания при добавлении бромистого этила и бисэтилксантогена не было следствием значительного уменьшения нагарообразования (табл. 51). [c.162]

    Переход на неэтилированные топлива не только предотвращает эмиссию свинца с продуктами сгорания, но и сокращает на 60-90% другие вредные выбросы путем использования каталитических нейтрализаторов, для которых свинец является ядом. Кроме того, в этом случае возможно поддержание состава топливно-воз-душной смеси, близкое к стехиометрическому, что обеспечивает такие оптимальные характеристики бензина, как плотность, вязкость, испаряемость, углеводородный состав, которые практически не влияют на токсичность отходящих газов. Но отказ от этилиро- [c.351]


    Применение того или иного бензина, осветительного керосина, дизельного, газотурбинного или котельного топлива обычно зави-0 от скорости и полноты окисления газообразных во время реакции сгорания. В производстве химических продуктов промышленное значение имеет прямое частичное окисление углеводородов при невысоких температурах. В то же время, для некоторых случаев использования нефтепродуктов окислительные реакции нежелательны, и прилагаются большие усилия, чтобы не допустить процессов окисления. Так например, более или менее длительные сроки эксплуатации нефтяных масел как смазочных, так и изоляционных, зависят от их антиокислительной стабильности в условиях работы при повышенных температурах. Образование шлама при эксплуатации турбинного масла в большой степени зависит от окисления углеводородов, входящих в состав данного шлама. По той же причине при хранении крекинг-бензинов увеличивается их смолосодержание, и при продолжительном использовании таких бензинов в автомобильных двигателях отлагается углеродистый осадок. [c.68]

    Принцип действия. В двигателях, используюших бензин и дизельное топливо, принцип действия пусковых жидкостей различен. Проблема возникающая при холодном пуске бензинового двигателя, заключается в недостаточной испаряемости бензина при низкой температуре, в результате чего состав образующейся горючей смеси далек от оптимального. Из-за этого продолжительность пуска возрастает. Это приводит к повышению пусковых износов, росту расхода топлива и увеличению эмиссии токсичных продуктов неполного сгорания, характерных для пускового периода. Если концентрация бензина в горючей смеси ниже нижнего концентрационного предела воспламенения (КПВ), то смесь вообще не воспламенится. Поэтому в основу составов для пуска холодных карбюраторных двигателей входят легколетучие жидкости с широкими КПВ. Как правило, это серный (диэтиловый) эфир, диапазон КПВ которого составляет от 2 до 48% (об.). Однако в чистом виде его не используют, так как он очень быстро сгорает, и само топливо воспламеняется уже после прохождения поршнем верхней мертвой точки. При этом очень высока скорость нарастания максимального давления, вызывающая повышенный износ и снижающая долговечность деталей двигателя. Поэтому в пусковую смесь добавляют фракции, являющиеся как бы промежуточными между эфиром и бензином петролейный эфир, газовый бензин, кислородсодержащие соединения и т. д. Их присутствие обеспечивает более плавное нарастание давления. [c.134]

    Такое Представление о сущности процесса указывает на значительный прогресс по сравнению со взглядами, господствовавшими 10 лет тому йазад. Однако по многочисленным важным вопросам до сих пор сведений не публиковалось. Нагарообразованию способствуют крекинг-топлива, особенно хвостовые их фракции но наиболее активно способствующие нагарообразованию структуры до сих пор строго не установлены. Обнаружена четкая зависимость между нагарообразованием и реакционной способностью бензина по отношению к п-нитробензолдиазонийфторобо-рату — классическому реагенту, применяемому для качественного определения реакционноспособных олефинов [268]. Обычно считают, что парафиновые и простые олефиновые углеводороды не способствуют нагарообразованию, но сложные диолефиновые, тяжелые ароматические и некоторые нафтеновые углеводороды, как показывают многочисленные экспериментальные данные [243], вызывают обильное нагарообразование. Подобные различия, несомненно, связаны с природой продуктов неполного окисления, прорывающихся через поршневые кольца в картер двигателя, однако химическое строение этих продуктов еще не выяснено. Не выяснен также механизм, в результате которого с повышением температуры в рубашке двигателя нагарообразование уменьшается. Очень сомнительно, что в представленных на рис. 1 опытах [244] уменьшение образования лака на поршне вызывается испарением компонентов, являющихся предшественниками нагара. Поскольку температуру поршня, работавшего с зажиганием-, поддерживали постоянной, самый процесс сгорания и, следовательно, состав прорывающихся в картер газов оставались неизмененными. Не изменялись также параметры, определяющие существующий в картере режим его вентиляция (количество отсасываемых газов), содержание воды и температура. Следовательно, наиболее важным параметром была температура в зоне, в которой изучался процесс нагарообразования, т. е. в зоне юбки поршня. Можно принять, что с повышением температуры растворимость смолистых предшественников лака в масле увеличивается. В этом случае нагарообразование на горячем поршне должно уменьшаться, что и объясняет увеличение лакообразова-ния на более холодном поршне в цилиндре, работавшем с зажиганием. Возможно также, что скорость превращения смолы в нелипкие, подобные коксу, продукты значительно увеличивается с повышением температуры в цилиндре. Роль окислов азота во всем этом процессе еще не ясна. Для ответа на эти и многочисленные другие вопросы, связанные с нагарообразованием в условиях низкотемпературного режима, потребуются дополнительные исследования. [c.20]

    В настоящее время во все виды бензинов добавляют небольшие количества (доли процента) тетраэтилсвинца РЬ(С2Н5)4,называемого сокращенно ТЭС. Это металлоорганическое соединение представляет собой тяжелую (а 1 = 1,6), бесцветную, очень ядовитую жидкость с температурой кипения 200°. ТЭС в чистом виде не применяется, так как при сгорании рабочей смеси происходит так называемое засвинцовывание двигателя, т. е. отложение окислов свинца на стенках камеры сгорания, днищах поршней, клапанах (особенно выпускных) и на электродах свечей. Поэтому ТЭС добавляют к топливам в виде этиловой ( свинцовой ) жидкости, в состав которой, кроме ТЭС (около 50%), входят еще выносители , т. е. вещества, обеспечивающие удаление (вынос) из цилиндров с отработанными газами продуктов окисления ТЭС. [c.37]

    Нефть является смесью, главным образом, различных углеводородов парафинового, нафтенового и ароматического рядов, к которым в небольшом количестве примешаны кислородные, азотистые и сернистые соединения. По своим физико-химическим свойствам входящие в состав сырой нефти углеводороды сильно отличаются друг от друга. Широкое развитие на протяжении последних десятилетий автотранспорта, авиации и других видов транспорта с двигателями внутреннего сгорания, применяющими жидкие топлива и в особенности наиболее легкие фракции нефти — бензины, привело к тому, что получение бензина обычными способами, например, прямой гонкой нефти, не в состоянии удовлетворить потребность в жидких моторных горючих. Это вызвало появление и быстрое распространение целого ряда новых технологических процессов, как крекинг и гидрогенизация нефтяных остатков. Параллельно с этим росли использование других видов сырья, гидрогенизация угля, пиролиз жидких продуктов переработки твердого топлива и полимеризация газов и др. Разработан и промышленно осуществлен также целый ряд синтетических способов получения углеводородов, по своему фракционному составу близких к бензинам. Из этих процессов следует отметить каталитический процесс получения синтетического бензина из водяного газа и т. д. Так как процессы термической переработки нефти и продуктов перегонки углей требуют высоких температур и, следовательно, значительной затраты тепла, то в последнее время (в период 1937—1938 гг.) осуществлен ряд процессов крекинга с использованием катализаторов, что дало возможность осуществлять эти процессы нри относительно невысоких температурах и при пони кенном или даже при атмосферном давлении. Наиболее удачным из этих процессов является разработанный в США метод каталитического крекинга X аудр и (Ноис1гу), протекающий при невысоких температурах и давлениях и даю-пщй при сравнительно небольших капитальных затратах прекрасное. моторное топливо. [c.581]


Смотреть страницы где упоминается термин Каков состав продуктов сгорания бензина: [c.22]   
Смотреть главы в:

Топлива, масла -> Каков состав продуктов сгорания бензина




ПОИСК





Смотрите так же термины и статьи:

Бензины, продукты из них

Каков состав продуктов сгорания

Сгорание бензина

Состаи продуктов



© 2024 chem21.info Реклама на сайте