Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотометрия щелочных металлов в пламени

    Предел обнаружения методом фотометрии пламени составляет 0,002—5 мкг/см Для щелочных металлов этот метод наиболее чувствителен из всех существующих методов их определения, за исключением радиохимических. Это справедливо также для кальция и стронция, если отсутствует анионный эффект. Определению меди, серебра, галлия, индия и таллия почти не мешают другие компоненты, поэтому фотометрию пламе [c.377]


    Пламя как источник света для эмиссионного спектрального анализа, еще десять лет назад использовавшееся для определения лишь щелочных металлов, в настоящее время превратилось в один из наиболее эффективных источников при анализе растворов. Одним из существенных преимуществ метода фотометрии пламени является использование эталонных растворов, приготовление которых значительно проще, чем эталонов металлов, сплавов и порошков. Пламя дает также значительные преимущества по сравнению с электрическими источниками в воспроизводимости результатов определений, позволяя снизить случайную ошибку измерения абсолютной интенсивности спектральных линий до десятых долей процента при оптимальном выборе параметров, определяющих режим работы горелки и распылителя. Это позволяет вести количественный анализ по измерению абсолютной интенсивности линий методом пламенной фотометрии точнее, чем при использовании электрических источников света, даже если в последнем случае анализ ведут по относительной интенсивности линий с использованием внутреннего стандарта. Отрицательным свойством пламени, однако, является малая чувствительность определения трудновозбудимых элементов, связанная с относительной низкой температурой (3000—3500° С). Несмотря на это, возможно определение фосфора пламенно-фотометрическим методом с чувствительностью 5—10 мкг мл [206, 207, 337, 567, 643, 992, 1027, 1059, 1097, 1110]. [c.78]

    Например, при определении содержания щелочных металлов с помощью пламенного фотометра, работая в диапазоне малой чувствительности схемы усиления, при параллельных замерах можно наблюдать одинаковые значения отсчетов выходного прибора. При отсутствии достаточного опыта подобные ситуации ошибочно оценивают как положительные. На самом же деле постоянство показаний прибора является следствием занижения воспроизводимости анализа, а значит, и потери его информативности. Разумным решением в этом случае будет переход на другой диапазон прибора с большей чувствительностью. При правильном выборе диапазона стрелка будет колебаться как при отсутствии рабочего раствора, так и при его введении в пламя. При этом, естественно, будут различаться и данные параллельных измерений, позволяя, таким образом, обеспечить корректную статистическую обработку результатов. В этом случае исследователь получает дополнительную информацию как о фактической воспроизводимости анализа, так и о воспроизводимости схемы регистрации сигнала. [c.176]


    Выше (стр. 130) приводились ориентировочные данные об интенсивности излучения элементов в различных пламенах. При переходе, например, от воздушно-ацетиленового пламени к пламени смеси светильного газа с воздухом яркость излучения лития и натрия уменьшается в 8 раз, кальция в 20—60 раз, а калия всего в 4 раза. Из сопоставления этих данных видно, что если приходится определять щелочные металлы на приборах с невысокой селективностью (фотометры со светофильтрами) в присутствии кальция или других металлов с высокими потенциалами возбуждения, то выгоднее использовать пламя смеси светильного газа с воздухом, так как при этом относительная яркость излучения щелочных металлов по сравнению с излучением щелочноземельных металлов становится больше. Достигаемый при этом выигрыш в общем невелик. Но иногда выбор пламени может иметь решающее значение, так как некоторые элементы (например, редкоземельные) в низкотемпературных пламенах практически не возбуждаются. [c.188]

    Переходя к аппаратуре, используемой при пламенно-фотометрическом определении редких щелочных металлов, следует отметить, что для Li нашли применение простые фотометры с интерференционными светофильтрами [192, 193]. Большая величина помех со стороны Са (факторы специфичности 100—1000) заставляет прибегать к фотометрам с компенсацией излучения кальция посредством дополнительного фотоэлемента со светофильтром, выделяющим молекулярную полосу СаОН [194]. Попытка применения фотометра со светофильтрами для определения Rb оказалась мало удачной [195] и для его определения, а также для определения s употребляются спектрофотометры [8, 196]. При малых содержаниях элементов необходим тщательный учет фона у основания линии, и для этой цели лучшие результаты дает применение спектрофотометра с записью спектра [198] Для Li выгоднее применение более горячих ацетиленово-воздушного и аце-тиленово- (или водородно-) кислородных пламен, в которых яркость его линий выше. Что касается Rb и s, то в ряде случаев целесообразно использование более холодных пламен (пламя светильного газа в смеси с воздухом, кислородно-газовые пламена, разбавленные инертным газом — азотом), в которых взаимное влияние щелочных металлов через подавление ионизации не проявляется [199, 200], а также фотометрирование зоны пламени вблизи внутреннего конуса, в которой вследствие высокого собственного парциального давления электронов ионизация подавлена [269]. [c.50]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    Наиболее простым и давно применяемым источником возбуждения эмиссии является пламя, его использовали еще в ручном спектроскопе при проведении качественного анализа. В настоящее время пламя применяют для точных количественных определений содержания щелочных и щелочноземельных металлов в растворе в методе фотометрии пламени. Поскольку температура в зонах пламени неодинакова, возбуждающая способность этих зон также различна. Количественная оценка интенсивности излучения возможна только при работе с очень равномерным пламенем, при исключительно равномерном распределении анализируемого раствора в пламени и использовании для возбуждения одной и той же зоны пламени. [c.370]

    Температура пламени светильный газ — воздух составляет около 1700 °С. Такой температуры достаточно для возбуждения атомов примерно 15 элементов и в первую очередь щелочных и щелочноземельных металлов. Таким образом, область применения пламенной фотометрии ограничена температурой пламени. Поэтому предложено использовать целый ряд пламен (табл. Д.22). Наивысшую температуру имеет пламя смеси дициан-f кислород. Однако из-за ядовитости дициана и других его недостатков это пламя применяют сравнительно редко. С помощью высокотемпературных пламен можно возбудить [c.374]

    Существуют пламенные фотометры двух типов. Простейший состоит из приспособления для распыления раствора в пламя, фильтра излучения и фотоэлемента, соединенного с гальванометром (рис. Д. 153). С помощью этого прибора можно определять щелочные и щелочноземельные металлы с погрешностью 2%. Высокая точность анализа объясняется тем, что атомы [c.375]


    Фотометры для пламени. Фотоэлектрические приборы для наблюдения спектров могут быть значительно упрощены, если их применять к элементам, которые легко возбуждаются в таком источнике света, как газовое пламя. Анализируемое вещество растворяют в воде и вносят в горючий газ посредством простого распылителя. Этот метод количественного определения по существу является ступенью в развитии известного испытания на пламя щелочных и щелочноземельных металлов. Излучение, выделяемое пламенем, диспергируется монохроматором, проходит через выходную щель и попадает на чувствительную поверхность фотоэлемента. Отдача фотоэлемента измеряется при каждой из [c.158]

    Разновидностью эмиссионного анализа является эмиссионная пламенная ф о т о м е т р и я, в которой исследуемый раствор вводят в бесцветное пламя горелки. По изменению цвета пламени судят о виде вещества, а по интенсивности окрашивания пламени - о концентрации вещества. Анализ выполняют с помощью прибора -пламенного фотометра. Метод в основном используется для анализа щелочных, щелочно-земельных металлов и магния. [c.514]

    В последнее время для определения щелочных и щелочноземельных металлов, легко возбуждаемых при более низких температурах, применяют пламенные фотометры, чаще всего без призм и сложной оптики. Такие приборы снабжены светофильтрами, пропускающими только эмиссию анализируемого элемента. Анализируемое вещество вносят в газовое пламя и фиксируют посредством фотоэлементов выделяемое пламенем излучение. Общий вид одного из пламенных фотометров показан на рис. 2. [c.19]

    Косвенное экстракционно-пламеннофотометрическое определение кадмия основано на экстракции МИБК соли щелочного металла иодидкадмиевой кислоты, распылении экстракта в низкотемпературное пламя и фотометрировании излучения щелочного металла. В качестве комплексообразующего реагента при определении кадмия используют иодид лития, имеющий низкую собственную растворимость в органической фазе данной экстракционной системы и, хотя его концентрация в водной фазе велика влиянием реагента на аналитический сигнал при определении микрограммовых концентраций кадмия можно пренебречь. Кроме того интерференционные фильтры пламенных фотометров имеют высокие факторы специфичности на литий. Интенсивность излучения щелочного металла линейно пропорциональна концентрации кадмия в водной фазе. Градуировочный график строят в координатах показания прибора — концентрация кадмия в стандартных растворах. Предел обнаружения кадмия 1 мкг/мл. Воспроизводимость 3% (отн.). [c.46]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Фотометрию пламени в узком смысле можно рассматривать как метод эмиссионной спектроскопии. Окрашивание пламени, возникающее, например, при внесении летучих солей щелочных и щелочноземельных металлов в пламя, издавна используют для целей качественного анализа. Но визуальным методом можно определить окрашивание пламени только в видимой части сп( ктра и невозможно разложить смешанную окраску на составные цвета, а интенсивность окраски можно оценить лишь очень приешизительно. В фотометрии пламени измеряют интенсивность излучения и при определенных условиях используют зависимость ее от концентрации веществ, вызывающих окрашивание пламени. [c.373]

    Пламя — самый низкотемпературный источник атомизации и возбуждения, используемый в АЭС. В зависимости от состава горючей смеси температура пламени может составлять от 1500 (светильный газ — воздух) до 3000 °С (С2Н2 — N20). Такие температуры оптимальны для определения лишь наиболее легко атомизируемых и возбудимых элементов, в первую очередь щелочных и щелочно-земельных (Са, 8г, Ва) металлов. Для них метод фотометрии пламени является одним из самых чувствительных (пределы обнаружения до 10" % масс.). Для большинства других элементов пределы обнаружения на несколько порядков выше. [c.229]

    Фотометрия пламени. Фотоэлектрические приборы для наблюдения спектров могут быть значительно упрощены, если они применяются для элементов, которые легко возбуждаются в таком источнике света, как газовое пламя. В этом случае образец растворяют в воде или органическом растворителе и ввэдят в пламя посредством распылителя. 5тот метод количественного определения по существу является стадией в разв 1тии известного испытания на пламя щелочных и щелочноземельных металлов. Излучение, испускаемое пламенем, анализируется либо с помощью монохроматора, либо светофильтрами затем выбранные длины волн обнаруживаются фотоэлектрическим путем. [c.104]

    А на миллиметр в области 3000 А, служит для наблюдения простых и сложных спектров. Наблюдению подвергаются спектры, возбужденные при испарении вещества в пламени, электрической дуге или в искре. Пламя обычной бунзеновской горелки может возбудить только спектры щелочных и щелочноземельных металлов. Более высокотемпературное пламя, кислородно-ацетиленовое или кислородно-водородное возбуждает спектры 35 элементов, в том числе и обычно определяемых в сельскохозяйственных продуктах . Приборы для фотометрии пламени, обеспечивающие быстрые определения, особенно щелочных элементов, вполне доступны. Дуга постоянного тока является обычно принятым источником возбулсдения в качественном анализе и для количественного определения следов элементов- . Высоковольтная дуга может служить для более точного контроля и применяется при определении более высоких концентраций элементов, главным образом для рядовых анализов металлов и сплавов. Другие источники возбуждения, как, например, разрядные трубки, находят более ограниченное применение. [c.164]


Смотреть страницы где упоминается термин Фотометрия щелочных металлов в пламени: [c.88]   
Смотреть главы в:

Физическая химия быстрых реакций -> Фотометрия щелочных металлов в пламени




ПОИСК





Смотрите так же термины и статьи:

Фотометрия

Фотометрия пламени

Фотометры



© 2025 chem21.info Реклама на сайте