Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование белковых компонент мембран

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]


    Мембраны бактерий. Протопласт снаружи окружает цитоплазматическая мембрана — плазмалемма, прилегающая непосредственно к оболочке. Мембраны составляют 40—90% всей массы клетки. Длительно существовало ошибочное представление, что периферическая плазмалемма бактериального протопласта является единственной мембранной структурой бактериальной клетки. Сейчас известно, что периферическая мембрана образует инвагинации, составляющие внутриклеточные мембранные структуры. Различными методами показано, что мембраны трехслойные и достигают 8,5 нм в толщину. У всех исследованных бактерий мембраны могут быть причислены к обязательным компонентам бактериальной клетки [63, 126]. В. И. Бирюзовой [23] собрана большая литература о молекулярной организации плазмалеммы. Ее наружная поверхность, обращенная к клеточной оболочке, состоит из субъединиц грибовидной формы с размером головки 8—12 нм. Часть этих субъединиц, по-видимому, является ферментативными белками, другая часть — белково-липидными структурами. [c.25]

    В химической, микробиологической, пищевой, фармацевтической и других отраслях промышленности часто встречается задача очистки растворов высокомолекулярных соединений (полимеров, белков и т. д.) от низкомолекулярных примесей (неорганических солей, спиртов и т. д.). Исследования, проводимые за последние годы, показали, что для этой цели можно с высокой эффективностью использовать диафильтрацию. Д и а ф и л ь т р а ц и я — это способ проведения обратного осмоса и ультрафильтрации, используемый в случаях, когда мембрана обладает заметно различной селективностью по отношению к разделяемым компонентам раствора. При диафильтрации в раствор вводится растворитель, расход которого равен количеству отбираемого фильтрата. Компонент раствора, плохо задерживаемый мембраной (НС), переходит вместе с растворителем в фильтрат, и таким образом в аппарате происходит [c.239]

    ТОЧНОЙ вирулентности — способности вызвать инфекционную болезнь вместо того, чтобы предохранять от нее. К сожалению, пока остается проблема низкой иммуногенностн вакцин-антигенов. Одной из ее причин может быть то, что вакцина не включает всех компонентов возбудителя, необходимых для создания иммунитета к нему. Так, вирус, покидая клетку, часто одевается ее мембраной. Компоненты этой мембраны, отсутствующие в генно-инженерном белке, могут обладать нммуногеннымн свойствами. Повышению иммуногенностн вакцин-антигенов способствуют добавление адъювантов, иммобилизация вакцин на носителях или их включение в липосомы. Большинство экспериментальных подходов или направлений в биотехнологических исследованиях связаны с медициной и ветеринарией. Не ослабевает внимание ученых к поиску новых антибиотиков, что связано с токсичностью существующих препаратов, аллергическими реакциями, вызываемые ими, нарастанием устойчивости патогенных микроорганизмов к применяемым препаратам, а также с необходимостью изыскания средств борьбы с возбудителями, против которых недостаточно эффективны известные антибиотики. [c.250]


    Информативным тестом для оценки нативного состояния эритроцитарной мембраны, а также исследования структурных перестроек и изменений в функционировании ее основных компонентов — липидов и белков, индуцированных воздействием целого ряда физико-химических агентов, является определение функциональной активности конформационного маркера мембраны — ацетилхолинэстеразы (см. раздел 1.2.5). [c.149]

    Значительный прогресс в этой области исследований был достигнут в лаборатории A. . Спирина в 1988 г. С помощью простых усовершенствований удалось получить эффективную бесклеточную белоксинтезирующую систему. Бесклеточные экстракты бактериальных или эукариотических клеток помещают в ячейку, закрытую с двух сторон полупроницаемыми мембранами. Размер пор позволяет проходить через мембраны вместе с током жидкости низкомолекулярным химическим веществам и небольшим белкам. Содержимое ячейки, в которой имеются все компоненты, необходимые для бесклеточной трансляции, инкубируют при обычной температуре. При этом с одной стороны в такую ячейку-реактор со скоростью 1 мл/ч непрерывно поступают ингредиенты, расходуемые в процессе биосинтеза белка (аминокислоты, АТР, GTP), а с другой - из нее выходят синтезированные белковые продукты (если их молекулярная масса и отсутствие способности к агрегации позволяют пройти через поры мембраны). [c.191]

    По большей части мы рассматриваем плоскую, симметричную липидную бислойную мембрану, образованную одним водонерастворимым липидным компонентом, например лецитином (компонент 2), погруженную в воду (компонент 1) в присутствии одного растворимого компонента, например, соли поверхностноактивного вещества или белка (компонент 3). Обобщение на случай многокомпонентного водного раствора —тривиально в случае же двух или более мембранообразующих компонентов оно также просто для открытой бислойной мембраны, но нуждается в специальном исследовании для частично закрытых бислойных мембран. [c.319]

    Помимо исследования специфического взаимодействия белковых и липидных компонент мембраны, проявляющегося в процессах рецепции, метод спинового зонда используется и для изучения достаточно общих закономерностей липид-белковых взаимодействий. Так, в целом ряде работ (см., например, [ИЗ, 187]) показано, что присутствие белков в липиде приводит к снижению интенсивности вращения гидрофобных зондов, т. е. к повышению жесткости липидных слоев. Именно благодаря влиянию белков на состояние липидных областей мембран жирорастворимые зонды позволяют следить за состоянием белковых компонент мембраны. Так, в работе [1881 при исследовании температурной зависимости подвижности зонда СП (5, 10) в мембранах саркоплазматического ретикулума и в работах [189] при исследовании температурной зависимости подвижности зонда АХП(14) в мембранах бактерий Mi ro o us lysodeikti us, наряду с обычными структурными переходами в липидных областях мембраны, обусловленных самими липидами, обнаружены структурные переходы в липидных областях мембраны, которые исчезали при тепловой денатурации мембранных белков, что свидетельствует об индукции этих переходов конформационными превращениями мембранных белков. [c.181]

    В пользу этого говорит и тот факт, что различные компоненты цепи присутствуют в совершенно разных количествах на одну молекулу NADH-деги-дрогеназного комплекса приходится 3 молекулы комплекса b- i, 7 молекул цитохромоксидазы, 9 молекул цитохрома с и 50 молекул убихинона. Кроме того, можно разбавить белки внутренней мембраны избытком фосфолипидов, сплавляя субмитохондриальные частицы с липосомами. При электронномикроскопическом исследовании таких частиц с применением метода замораживания-скалывания видно, что дыхательные комплексы разделены в них большими промежутками, чем в нормальных субмитохондриальных частицах, и расположены в случайном порядке. [c.30]

    Мембранология — современная, стремительно развивающаяся междисциплинарная область естественных наук, находящаяся на стыке биофизики, биохимии, молекулярной биологии, иммунологии, физиологии, генетики, физической и коллоидной химии и др. Она изучает состав, структуру, свойства, функции, локализацию компонентов биологических мембран, их молекулярную и динамическую организацию, особенности межмоле-кулярных взаимодействий и фазовые переходы липидов и белков в мембране, транспорт веществ через мембраны, участие биомембран в осуществлении и регулировании метаболических процессов в клетке, механизмы действия различных физико-химических факторов на мембранные системы и другие вопросы, связанные с исследованием состояния компонентов биомембран и отдельных клеток. [c.7]

    Интересная особенность отмечена при изучении распределения фермента между компартментами клетки в отличие от ряда других тканей в мозге основная часть (до 80%) гексокиназы сосредоточена не в цитоплазме, а в митохондриях. В связывании фермента с внешней митохондриальной мембраной участвует специфический белок, детальные исследования свойств которого указывают на идентичность его с белком, формирующим поры. На прочность взаимодействия гексокиназы с мембранным белком оказывает влияние фосфолипидный компонент мембраны (наиболее активным оказался дифосфоинози-тид). Причины такого своеобразного внутриклеточного распределения гексокиназы в мозге пока не совсем ясны, но имеются предположения, что такая локализация обеспечивает более быстрое и эффективное фосфорилирование глюкозы за счет АТФ, синтезированного в митохондриях. [c.154]


    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Отметим, что мембраны пленочных электродов в той или иной степени подвержены влиянию белков и проявляется это особенно заметно при длительном контакте электрода с кровью, о чем свидетельствует изменение потенциала электрода во времени. Особенно заметно влияние белков на С1-электроды. Тем не менее на современном этапе эти электроды могут быть рекомендованы для определения содержания минеральных компонентов крови в отдельных пробах. Для проведения многих медико-биологических исследований необходим непрерывный контроль ионного состава крови непосредственно in vivo, который не может быть проведен без наличия разнообразных по конструкции микроэлектродов, разработка которых [c.185]

    Классической работой по электрофоретическому разделению белков мембран эритроцитов человека является исследование Фейрбанкса и соавт. (1971), в котором предложена номенклатура полипептидных полос, выявляемых в солюбилизированной с помощью додецилсульфата натрия (ДСН) мембране. Этой номенклатурой пользуется в настоящее время большинство ученых. Наличие сетчатой структуры, выстилающей внутреннюю поверхность мембраны эритроцита, было обнаружено непосредственно с помощью электронной микроскопии после обработки клеток неионным детергентом тритоном Х-100. При определенных экспериментальных условиях (в среде с высокой ионной силой и при низкой температуре) применение этого детергента позволяет полностью солюбилизировать липидный бислой и интегральные белки. При этом остается сеть белков, сохраняющая исходную форму клетки, которая представляет собой мембранный скелет (каркас) эритроцита. Он тестируется в виде двухмерной сети филаментов, длина которых зависит от особенностей приготовления препарата для микроскопии. Необходимо отметить, что белки, близкородственные компонентам цитоскелета эритроцитов, обнаружены в ряде неэритроидных клеток. В связи с универсальностью данной системы следует более подробно рассмотреть структуру и свойства некоторых цитоскелетных белков. [c.31]

    Мембраны саркоплазматического ретикулума — удобная модель для изучения механизма преобразования энергии при ак-тивнем транспорте ионов. Для исследования биохимических и структурных свойств саркоплазматического ретикулума используют преимущественно микросомальную фракцию, выделяемую из скелетных мышц кролика в результате гомогенизации ткани и последующего дифференциального центрифугирования. Под электронным микроскопом она выглядит как довольно гомогенная смесь замкнутых пузырьков диаметром от 50 до 200 нм. В мембранах такого препарата локализован высокомолекулярный белковый компонент — Са-АТФаза, на долю которого приходится от 70 до 90% всего белка. Благодаря исключительной простоте данной системы ионного транспорта она в настоящее время детально охарактеризована. [c.52]

    Как отмечено в обзоре Росса и Джилмана [1], роль структуры и состава плазматической мембраны в регуляции активности аденилатциклазы — одна из наиболее туманных и наименее тщательно документированных областей исследования фермента. Основным наблюдением является то, что солюбилизация плазматических мембран или добавление к ним агентов, разрушающих мембранную структуру, вызывают потерю чувствительности к гормону. Хотя описана солюбилизация Мд2+-зависимой аденилатциклазы, регуляторного N-белка и рецепторов, в настоящее время нет работ, в которых бы сообщалось о получении истинно солюбилизированной гормон-чувствительной активности, которая сохраняла бы специфичность действия гормона. Поэтому, не имея возможности описать исчерпывающим образом работу аденилатциклазного комплекса, в целом, перечислим имеющиеся сведения о структуре, расположении в мембране и взаимодействии его отдельных компонентов. [c.94]

    Широко известно, что липиды и белки in vitro в соответствующих условиях могут образовывать мембраны, очень сходные в структурном отношении с естественными. Важная роль конфигурации затравки, наличие которой необходимо для сборки макромолекул при образовании клеточных структур, подчеркнута Зоннеборном [1646]. Однако необходимость таких затравочных конфигураций для плазматических мембран не установлена. Исследования, проведенные недавно на My oplasma spp., показали, что если после разрушения и солюбилизации липидного и белкового компонентов плазматической [c.499]


Смотреть страницы где упоминается термин Исследование белковых компонент мембран: [c.222]    [c.180]    [c.170]    [c.198]    [c.211]    [c.17]    [c.86]    [c.254]    [c.92]    [c.169]    [c.7]   
Смотреть главы в:

Метод спинового зонда -> Исследование белковых компонент мембран




ПОИСК







© 2025 chem21.info Реклама на сайте