Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс цепи дыхательной

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    Теперь можно подвести итог тому, каков энергетический выход при окислении молекулы глюкозы, осуществляемом в максимально отлаженной энергетической системе, функционирующей в эукариотных клетках гликолиз—>ЦТК— -дыхательная цепь митохондрий. На первом этапе в процессе гликолитического разложения молекулы глюкозы образуются по 2 молекулы пирувата, АТФ и НАД Н2. Конечными продуктами реакции окислительного декарбоксилирования 2 молекул пирувата, катализируемой пируватдегидрогеназным комплексом, являются 2 молекулы ацетил-КоА и НАД Н2. Окисление 2 молекул ацетил-КоА в ЦТК приводит к образованию 6 молекул НАД Н2 и по 2 молекулы ФАД Н2 [c.366]

    На рисунке схематично изображены принципы, лежащие в основе хемиосмотической теории окислительного фосфорилирования. Р, и Ро - белковые субъединицы, ответственные за фосфорилирование. Основной поток протонов создается сопряжением окисления с транслокацией протонов, переносимых с внутренней на наружную сторону мембраны эта транслокация осуществляется комплексами дыхательной цепи I, 111 и IV, каждый из которых действует как протонная помпа. Разобщители, например, динитрофенол, вызывают утечку Н через мембрану, сильно снижая электрохимический протонный градиент. Олигомицин специфически блокирует поток протонов через Рц [c.88]

Рис. 9. Схема циклического транспорта электронов у несерных пурпурных бактерий, представленная в виде сопряжения ФРЦ и комплекса Ъ— i, аналогичного комплексу III дыхательной цепи митохондрий Рис. 9. Схема <a href="/info/278311">циклического транспорта электронов</a> у <a href="/info/710852">несерных пурпурных бактерий</a>, представленная в <a href="/info/1439362">виде сопряжения</a> ФРЦ и комплекса Ъ— i, аналогичного комплексу III <a href="/info/99457">дыхательной цепи</a> митохондрий
    В сильно упрощенном виде, следуя терминологии школы Д. Грина, дыхательную цепь можно представить в виде четырех относительно независимых комплексов I — НАДН убихинон-оксидоредуктаза, И — сукцинат убихинон-оксидоредуктаза П1 — убихинол цитохром с-оксидоредуктаза, IV—цитохром с Ог-оксидоредуктаза, объединяемых функционально чрезвычайно липофильным убихиноном и весьма гид- [c.415]

Рис. 10. Упрощенная схема первичных электронтранспортных реакций фотосинтеза высших растений, представленная в виде сопряжения двух фотосинтетических реакционных центров (ФРЦ ФС II, ФРЦ ФС I) и цитохромного комплекса b f аналогичного комплексу III дыхательной цепи митохондрий Рис. 10. <a href="/info/1472997">Упрощенная схема</a> первичных электронтранспортных <a href="/info/201271">реакций фотосинтеза</a> высших растений, представленная в <a href="/info/1439362">виде сопряжения</a> <a href="/info/1696521">двух</a> <a href="/info/728058">фотосинтетических реакционных центров</a> (ФРЦ ФС II, ФРЦ ФС I) и <a href="/info/1327610">цитохромного комплекса</a> b f аналогичного комплексу III <a href="/info/99457">дыхательной цепи</a> митохондрий

    Комплексы I и И выполняют одну и ту же функцию — передачу водорода и электронов на комплекс П1. Дыхательная цепь начинается с комплекса I, если электроны поступают от кофермента НАД-Н, и с комплекса И, если донором водорода служит янтарная кислота (один из продуктов цикла Кребса). От комплекса П1 водород и электроны переходят к комплексу IV и, в конечном счете, на молекулу кислорода  [c.402]

    Дыхательная цепь включает три белковых комплекса комплексы I, III и IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные мо леку лы-переносчика - убихинон (кофермент Q) и цитохром с. Сукцинатдегидрогеназа, принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза иногда называется комплексом V, хотя она не принимает участия в переносе электронов (см. рис. 7.12). [c.174]

    Мультиферментные комплексы, составляющие дыхательную цепь митохондрий [c.208]

    FMN и FAD — промежуточные переносчики электронов и протонов в дыхательной цепи FMN входит в состав 1-го комплекса цепи тканевого дыхания, FAD — в состав Г1-го комплекса. [c.22]

    При изучении влияния БХШ 310 на отдельные комплексы дыхательной цепи митохондрий озимой пшеницы было установлено, что степень разобщения окислительного фосфорилирования митохондрий озимой пшеницы, вызванного добавлением БХШ 310, была максимальной при использовании субстрата комплекса I дыхательной цепи (рис. 37), т.е. что этот комплекс наиболее чувствителен к разобщающему действию БХШ 310. Другие комплексы дыхательной цепи воздействию со стороны БХШ 310 подвергались в значительно меньшей степени (рис. 37). Такое неравнозначное действие БХШ 310 на отдельные комплексы дыхательной цепи отличается от действия классических разобщающих белков. [c.74]

    Эволюция живых клеток привела к удивительной способности раздробления гигантского энергетического эффекта образования воды на большое число слагаемых весь процесс разбивается на звенья и каждый шаг в их цепи сопровождается переходом электрона от одного промежуточного комплекса к другому при одновременном снижении уровня эне ргии и переходе выделяемой энергии на ту или иную сопровождающую окисление водорода химическую реакцию в частности, весьма заметная часть общего энергетического эффекта консервируется в молекулах АТФ, возникающих из АДФ и фосфорильных радикалов. В результате идет окислительное фос-форилирование за счет окисления водорода, которое идет по цепи промежуточных веществ цитохромов, электрон как бы опускается по ступеням энергетической шкалы вдоль дыхательной цепи цитохромов и происходит накопление АТФ, т. е. обогащение третьим фосфорильным звеном молекул АДФ. Цепь этого окислительного фосфорилирования может быть схематически представлена так  [c.335]

    ФМН-зависимая дегидрогеназа входит в состав комплекса НАДН KoQ-оксидоредуктазы, окисляющей НАДН и восстанавливающей коэнзим Q, т. е. она является промежуточным переносчиком электронов в дыхательной цепи. [c.195]

    В 60-х гг. XX в., благодаря методам мягкого разрушения интактных митохондрий, бьши выделены четыре дыхательных комплекса (I, П, П1, IV), каждый из которых способен катализировать определенную часть полной последовательности реакций дыхательной цепи  [c.199]

    Образование мультиферментов или согласованных систем ферментов молекулярных (синтетаза жирных кислот, пируватдегидрогеназа) или надмолекулярных комплексов (цепь дыхательных ферментов). [c.35]

    Цитохромоксидаза—гемопротеин, широко распространенный в растительных и животных тканях. Она служит конечным компонентом цепи дыхательных переносчиков, локализованных в митохондриях, и катализирует реакцию, в результате которой электроны, высвобождающиеся из молекул субстрата при их окислении дегидрогеназами, переносятся на конечный акцептор —кислород. Данный фермент отравляется окисью углерода, цианидом и сероводородом. Иногда цитохромоксидазу называют цитохромом j. Первоначально предполагали, что цитохром а и цитохром fltj—это автономные гемопротеины, поскольку каждый из них характеризуется определенным спектром, кроме того, они проявляют разную чувствительность к действию окиси углерода и цианида. В дальнейшем же было показано, что эти два цитохрома входят в сосх ав комплекса, который получил название цитохром аа Он содержит две молекулы гема, в каждой из которых атом железа может переходить из состояния Fe + в состояние Fe + и обратно в ходе окисления и восстановления, а также два атома Си, каждый из которых взаимодействует с одним из гемов. [c.120]

    NAD — кофермент дегидрогеназ, участвующий в реакциях окисления глюкозы, жирных кислот, глицерина, аминокислот, является коферментом дегидрогеназ цикла Кребса (исключая сук-цинатдегидрогеназу). В этих реакциях кофермент выполняет функцию промежуточного акцептора электронов и протонов. NAD — переносчик протонов и электронов в дыхательной цепи митохондрии (от окисляемого субстрата к первому комплексу цепи тканевого дыхания). [c.28]

    При изучении функций стрессового разобщающего белка БХШ 310 в растительной клетке во время гипотермии показано, что этот стрессовый белок во время низкотемпературного стресса регулирует энергетические функции митохондрий, разобщая окисление и фосфорилирование и вызывая термогенез. При изучении ассоциации БХШ 310 с митохондриями in vitro показано, что при инкубации изолированных митохондрий с данным белком при О происходит быстрая ассоциация БХШ 310 с митохондриями. Показано, что БХШ 310 по-разному действует на комплексы дыхательной цепи митохондрий. Наиболее сильное увеличение нефосфорилирующего дыхания отмечено при функционировании первого комплекса дыхательной цепи. На остальные комплексы митохондриальной дыхательной цепи этот белок влияет в значительно меньшей степени. В модельном эксперименте показан эффект термогенеза, вызываемого добавлением к митохондриям БХШ 310. [c.113]


    Перенос электронов по дыхательной цепи митохондрий приводит к аккумуляции энергии окислительно-восстановительных реакций в виде АТФ. Протекание эндергонической реакции синтеза АТФ из АДФ и Ф ( 10 ккал/мол) возможно за счет экзергонической реакции окисления НАДН или сукцината кислородом. Механизмом, обеспечивающим сопряжение этих двух реакций, является АТФ-синтетазный комплекс, способный в определенных условиях катализировать гидролитический распад АТФ. Последняя реакция (АТФазная активность) служит удобным объектом для изучения механизма окислительного фосфорилирования. Схема, иллюстрирующая процесс образования и распада АТФ в митохондриях, приведена на рис. 60. [c.471]

    Единого механизма для реакций с участием флавина пока еще не существует. Нельзя исключить образование комплекса с переносом заряда, но свободнорадикальное промежуточное соединение также возможно. Следует напомнить, что для флавиповых ферментов обычно требуются ионы металлов, и они могут играть большую роль в механизме. Фактически промежуточное положение, которое флавиповые ферменты занимают в биохимических процессах дыхательной цепи, после никотинамидных кофермеи-тов (двухэлектронный процесс) и перед цитохромами (одноэлектронный процесс) может быть вызвано сложностью флави-новой структуры, допускающей как ионный, так и свободнорадикальный механизмы. [c.413]

    Интактные митохондрии представляют собой осмотически активные пузырьки, отделенные от гиалоплазмы (или среды инкубации при эксперименте in vitro) двумя мембранами. Таким образом, существуют четыре топологически различных пространства внешняя мембрана, межмембранное пространство, внутренняя мембрана и внутреннее пространство — матрикс. Ферменты цикла трикарбоновых кислот сосредоточены в матриксе компоненты дыхательной цепи, транглоказа адениннуклеотидов и АТФ-синтетазный комплекс прочно связаны с внутренней мембраной, в межмембранном пространстве локализована аденилаткиназа, а во внешней мембране — моноаминооксидаза. [c.410]

    Ниже приведены методы получения всех четырех комплексов. В качестве исходного материала (нативная дыхательная цепь) могут быть использованы либо ультразвуковые субмитохондриальные фрагменты, либо препарат Кейлина—Хартри (с. 407). [c.415]

    Одним из компонентов дыхательной цепи митохондрий является коэнзим Q, или убихинон. Это соединение способно к редокс-превраще-ниям и присутствует в митохондриях в количествах, более чем на порядок превышающих содержание ферментов дыхательной цепи. Коэнзим Q акцептирует электроны от дегидрогеназ, локализованных во внутренней мембране митохондрий (сукцинат- и НАДН-дегидроге-назы), и передает их комплексу III (с. 415). Согласно хемиосмоти-ческой гипотезе Митчела, в процессе редокс-превращений коэнзим Q осуществляет векторный перенос протонов через мембрану в так называемом Q-цикле . Реакция переноса электронов и протонов с участием коэнзима Q в комплексе III сопровождается высвобождением энергии, достаточной для синтеза одной молекулы АТФ. [c.421]

    Перенос электронов по дыхательной цепи митохондрий завершает цитохромоксидаза (цитохром сЮг-оксидоредуктаза, комплекс IV), катализирующая реакцию восстановления молекулярного кислорода до воды. Донором электронов для фермента служит ферроцитохром с. Реакция специфически блокируется цианид- и азид-ионами, а также окисью углерода. Цитохромоксидаза прочно связана с внутренней мембраной митохондрий и является интегральным мембранным белком в раствор фермент может быть высвобожден лишь после растворения мембраны высокими концентрациями детергентов. В нативной мембране, а также в растворах неионных детергентов (тритон Х-100, твин-80, Emasol-1130) цитохромоксидаза присутствует в виде высокоактивного димера. Некоторые воздействия (рН>8,5, высокие концентрации солей и неионных детергентов) вызывают появление мономерных форм фермента. Каталитическая активность цитохромоксидазы зависит от степени агрегации молекулы фермента. [c.432]

    Ферменты могут работать согласованно, не будучи связанными друг с другом, например ферменты гликолиза иногда образуются ферментные комплексы, в которых ферменты ассоциированы и работают взаимозависимо. Так, в синтетазе жирных кислот семь ферментов объединены в один активный комплекс, при распаде его активность исчезает. К надмолекулярным активным комплексам относятся также мембранные ферменты (транспортные ферменты, ферменты дыхательной цепи), которые иногда называют мультиферментами или ферментами с несколькими активными центрами. [c.36]

    Дыхательная цепь митохондрий представлена четырьмя дыхательными комплексами, катализирующими парциальные реакции окисления сукцината и НАДН кислородом (см. рис. 48, с. 415). В настоящее время установлено, что функционирование комплексов I, 1П и IV сопряжено с генерацией Изучение механизма функционирова- [c.438]

    НАДН убихинон-оксидоредуктазный комплекс дыхательной цепи митохондрий (комплекс I — см. с. 415) катализирует реакцию окисления НАДН эндогенным убихиноном. Активность НАДН убихинон-оксидоредуктазы специфически ингибируется такими веществами, как амитал, пиерицидин, реин и ротенон. Последний ингибитор наиболее широко применяется при изучении переноса электронов в дыхательной цепи и молекулярной организации комплекса I. Ротенон обладает сильно выраженными гидрофобными свойствами и способен помимо НАДН убихинон-оксидоредуктазы взаимодействовать с гидрофобными участками многих белков, в частности бычьего сывороточного альбумина, и фосфолипидными мембранами. [c.441]

    Химический механизм сопряжения переноса электронов с образованием АТФ неизвестен. Наибольшее признание в последние годы получила гипотеза П. Митчелла об электрохимическом (хемиосмотиче-ском) сопряжении окислительных реакций в дыхательной цепи с синтезом АТФ, катализируемым АТФ-синтетазным комплексом. Согласно этой гипотезе вне- и внутримитохондриальные пространства (левая и правая часть рисунка соответственно) разделены мембраной М, непроницаемой для ионов водорода — Н+. Дыхательная цепь организована в мембране таким образом, что окисление субстрата (SH2) кислородом приводит к разделению зарядов (группа реакций — I). Энергия окисления запасается в виде электрохимического потенциала Н+ [c.471]

    Помимо трех ароматических а-аминокислот шикиматный путь дает возможность синтезировать другие биологически активные метаболиты, например изопреноидные хиноны, которые участвуют в транспорте электронов во многих организмах. Главная функция этих жирорастворимых хинонов, которые, по-видимому, определенным образом ориентированы в мультиферментных комплексах, участвующих в процессах дыхания у некоторых организмов, состоит, вероятно, в переносе электронов между различными дыхательными коферментами. Например, убихиноны, скорее всего, являются посредниками между флавопротеинами и цитохромами в дыхательной цепи (см. разд. 24.3.2.3). [c.698]

    Некоторые исследователи склонны рассматривать, и не без основания, существование пятого уровня структурной организации белков. Речь идет о полифункциональных макромолекулярных комплексах, или ассоциатах из разных ферментов, получивших название метаболических олигомеров, или метаболонов, и катализирующих весь путь превращений субстрата (синте-тазы высших жирных кислот, пируватдегидрогеназный комплекс, дыхательная цепь). [c.71]

    Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липвдное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физикохимические свойства упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее больщинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое димеры (Са -АТФаза), тетрамеры (Ка /К -АТФаза) или даже более высокоорганизованные надмолекулярные комплексы. [c.316]

    Окислительное декарбоксилирование пировиноградной кислоты Пируватдегидрогеназа (пируватдегидрогеназный комплекс) Окисление 2НАДН в дыхательной цепи б [c.352]

    Как же происходит выделение энергии в этих метаболических процессах Электроны, удаляемые на разных стадиях цикла Кребса, а также на двух предшествующих ему стадиях (образование лактата и пирувата), передаются по дыхательной цепи переносчиков. В эту цепь входит сложный комплекс ферментов и коферментов, а именно НАД, фермент из группы флавопротеи-дов (ФП) и ряд железосодержащих ферментов — цитохромы Ь, с, а, йз. Электроны, проходя по цепи, передают свою энергию молекулам АТФ — происходит окислительное фосфорилирование. Открытие этого важнейшего явления связано с именами Энгель-гардта [36] и Белицера [37, 38]. В конечном счете электроны переносятся на кислород, восстанавливаемый до воды. [c.105]

    Б дыхательной цепи денитрификаторов при переносе электронов на нитрат функционируют 2 генератора Арн+ (вместо 3 при переносе электронов на О2). Процесс восстановления нитрата до нитрита локализован на внутренней стороне ЦПМ. По другим данным, ферментный комплекс имеет трансмембранную ориентацию, в результате чего поглощенные из цитоплазмы протоны переносятся на противоположную сторону, где участвуют в нит-ратредуктазной реакции. В любом из вариантов это приводит к [c.406]

    Железосерные белки входят в состав комплексов I, П, П1 дыхательной цепи митохондрий, выполняя роль второй простетической группы в процессе транспорта электронов. [c.197]

    Было установлено, что активность изолированных комплексов аддитивна, т. е. при смешении комплексов получается окислительно-восстановительная реакция, соответствующая сумме отдельных реакций дьгхательной цепи. Выделение комплексов дыхательной цепи позволило сделать вывод об определенной пространственной ориентации этих комплексов в мембране. Важная роль в передаче электронов от одного комплекса к другому принадлежит KoQ и цитохрому с. Цитохром с является единственным растворимым цитохромом и наряду с коэнзимом Q служит мобильным компонентом дыхательной цепи, осуществляя связь между фиксированными в мембране комплексами. [c.199]

    Дыхательная цепь ферментов, образующая комплексы I, П1 и IV, как бы трижды перешнуровывает мембрану митохондрий. Таким образом, каждая пара электронов, транспортирующаяся от НАДН к кислороду, извлекает из матрикса три пары Н" , которые транслопируются на наружную поверхность мембраны, в результате чего образуется три молекулы АТФ (рис. 15.7). [c.203]


Смотреть страницы где упоминается термин Комплекс цепи дыхательной: [c.395]    [c.11]    [c.31]    [c.37]    [c.83]    [c.98]    [c.118]    [c.126]    [c.6]    [c.78]    [c.13]    [c.415]    [c.426]   
Биологическая химия Изд.3 (1998) -- [ c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды



© 2025 chem21.info Реклама на сайте