Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобные ионы катионы

    Ион (катион) слишком гидрофилен, чтобы эффективно проникать через толстый ( 10 нм) гидрофобный слой липидов и липопротеинов, входящих в состав природны.< и искусственных мембран. Однако селективно связываясь с полярными группами, находящимися внутри макроциклического кольца, катион оказывается покрытым гидрофобной оболочкой, что позволяет ему легче проходить через мембрану. [c.282]


    В процессе образования гидрофобного золя рост ядра в той или иной стадии может быть приостановлен созданием так называемого адсорбционного слоя из ионов стабилизатора. Ионная сфера вокруг ядра коллоидной мицеллы состоит из двух слоев (или двух сфер) — адсорбционного и диффузного. Адсорбционный слой слагается из слоя потенциалопределяющих ионов, адсорбированных на поверхности ядра и сообщающих ему свой заряд, и части противоионов, проникших за плоскость скольжения и наиболее прочно связанных электростатическими силами притяжения. Вместе с ядром эта ионная атмосфера образует как бы отдельный гигантских размеров многозарядный ион — катион или анион, называемый гранулой. Диффузный слой, расположенный за плоскостью скольжения, в отличие от адсорбционного не имеет в дисперсионной фазе резко очерченной границы. Этот слой состоит из противоионов, общее число которых равняется в среднем разности между всем числом потенциалопределяющих ионов и числом противоионов, находящихся в адсорбционном слое. [c.318]

    Самым важным из этих факторов считают изменение вязкости растворителя в сольватной оболочке иона под влиянием заряда иона [12, 25]. Наибольшее значение данный эффект приобретает в водных растворах и приводит к появлению как бы положительной избыточной подвижности и отрицательному температурному коэффициенту произведения Вальдена. Второй эффект, который удалось наблюдать лишь в случае больших гидрофобных ионов в водных растворах, состоит в увеличении дальнего порядка. Такие ионы, по-видимому, обладают отрицательной избыточной электропроводностью и положительным температурным коэффициентом. Таким образом, температурный коэффициент числа переноса зависит в значительной степени от относительного влияния соответствующих ионов на структуру воды в их сольватных оболочках. Можно ожидать, что температурный коэффициент числа переноса катиона для Св1 будет мал, так как и Сз и Г нарушают структуру воды в своих сольватных оболочках, тогда как для Bu NI будет иметь большой положительный температурный коэффициент, поскольку Bu N оказывает структурирующее действие. [c.81]

    В предлагаемой статье под термином экстракция всегда имеется в виду извлечение образуемых элементами соединений из водной среды в неводную. Для обеспечения хорошего экстрагирования требуется, чтобы экстрагируемое соединение было слабо сольватировано молекулами воды и хорошо растворимо в примененном экстрагенте. Если экстрагируемое соединение является нормальной солью, что часто встречается, и образуется в процессе самой экстракции, то такая, соль экстрагируется тем лучше, чем более гидрофобны образующие. эту соль анионы и катионы. Соли, состоящие из одного катиона и одного аниона, т. е. имеющие состав 1 1, экстрагируются всегда лучше солей иного состава, особенно в случае однозарядных ионов. Для обеспечения хорошего экстрагирования необходимо, чтобы элемент был переведен в достаточно гидрофобные ионы и чтобы в системе имелись другие, также достаточно гидрофобные ионы — партнеры с противоположным зарядом, могущие образовать с первыми ионами пригодные для экстракции соли. [c.5]


    Кроме того, четвертичные аммониевые соли резко изменяют структуру воды вследствие гидрофобных взаимодействий углеводородных цепей с водой, что приводит к возникновению у четвертичного аммониевого катиона плотной гидратной оболочки ( шуба ), внутри которой образуются полости ( дыры ). Это хорошо объясняет, например, увеличение растворимости органических молекул (углеводородных газов) [4, 6], которые могут размещаться в этих полостях, и изменение pH растворов этих солей из-за снижения активности ионов Н+, происходящего в результате прекращения эстафетной передачи протонов в воде. [c.20]

    Твердые сорбенты растительного происхождения - это опилки. Для повыщения качественных характеристик древесных опилок их пропитывают расплавом гидрофобного наполнителя, в отдельных случаях древесные опилки комбинируют с минеральными сорбентами (каолин, бетонит, тальк и др.). В качестве сорбента разбрасывают и модифицированный торф. Модификация заключается в замене минеральных подвижных ионов на органические, поэтому модифицирование проводят методом ионного обмена в водной среде, степень очистки нефти модифицированным торфом составляет до 90%. Торф, модифицированный органическими катионами, долго не утрачивает своей сорбционной активности. Комбинированные поглотители - это полипропиленовое волокно и пенополиуретаны. Пенополиуретановую массу помещают между гидрофобными слоями, крепят волокнистый слой к пенополиуретану свободно (в противном случае резко снижается эффективность поглотителя). Поглощающая способность комбинированных поглотителей для тяжелых и легких нефтей в зависимости от толщины пленки составляет 26 кг/кг, а кратность использования достигает даже 30 раз. [c.127]

    Ионы пятивалентного и шестивалентного молибдена образуют в водных растворах окрашенные соединения с многими органическими реагентами, содержащими сульф-гидрильпую группу или две гидроксильные группы в определенном положении [1]. Часто эти соединения в воде находятся в виде анионов и не экстрагируются органическими растворителями. В таких случаях экстракцию можно обеспечить введением в раствор соли крупного гидрофобного органического катиона, образующего с комплексным анионом экстрагируемый ионный ассоциат. В качестве таких солей В. И. Кузнецов и С. Б. Саввин [2, 3] предлагают использовать доступные хлориды дифенилгуани-диния (/) и бензилтиурония (//)  [c.81]

    Прежде считали, что анионные внутрикомплексные соединения не экстрагируются. Циглер и Глемзер [323—326] показали, однако, что в ряде случаев эти соединения могут извлекаться органическими растворителями в виде ионных ассоциатов с крупными гидрофобными органическими катионами — тетрафениларсо-нием, трибутиламмонием и др. Эти катионы специально вводятся в систему. [c.107]

    По данным измерения проводимости четвертичных. (метил, бутил- и гексил-) перхлоратов аммония в водных и неводных растворах и смесях растворителей видно [102в, 102г], что в сравнимых условиях степень ассоциации в водных растворах и омеси вода—диоксан повышается при возрастании длины боковой цепи иона, но подобная зависимость не наблюдается в спиртах и других растворителях с водородными связями. Следовательно, ионы ассоциируют по двум разным механизмам. В спиртах и аналогичных растворителях отдельные ионные пары образуются благодаря электростатическому взаимодействию ионов. Его можно рассматривать как взаимодействие нвполяризуемых сферических ионов в среде — континууме, молекулярные свойства которой не учитываются (т. е. пренебрегается специфическим взаимодействием между ионами и молекулами растворителя). В результате данного типа ассоциации образуются лишь контактные ионные пары, а ассоциация в значительной мере зависит от десольватации аниона. С другой стороны, в водных растворах степень ассоциации повышается при увеличении гидрофобной части катиона, очевидно, вследствие изменения структуры воды под влиянием углеводородной группы. Образованию ионных пар в некоторой мере способствует структура воды, и это можно связать лишь с ее трехмерными структурными элементами. [c.369]

    Изучение проводимости галогенидов тетралкиламмония в водных растворах в интервале температуры 4—25 °С под давлением до 4000 бар [9] подтвердило вывод об особой природе гидратации ионов тетралкиламмония, обусловленной гид-рофобностью их алкильных групп. Вблизи этих крупных гидрофобных ионов кулоновские силы играют при гидратации меньшую роль по сравнению с их ролью вблизи нормальных ионов (например, ионов щелочных металлов) и гидростатическое давление влияет на гидратацию ионов тетралкиламмония очень незначительно. По-видимому, в растворах крупных ионов этого ряда следует учитывать катион-катион-ное взаимодействие. Необходимо отметить, что зависимость проводимости тетразамещенных ионов аммония от давления имеет максимум. [c.404]


    Группа крупных гидрофобных органических катионов образует соли со многими простыми анионами и анионными внутрикомплексными соединениями. Эти ионные ассоциаты хорошо экстрагируются различными органическими растворителями. К этой группе относятся соли тетрафениларсония (I), тетрабутиламмония (II), дифенилгуанидиния (III) бензтиурония (IV), тетрафенилстибония, тетрафенилс сфония и др. [c.252]

    Хигучи и др. [351] установили, что пластифицированные мембранные электроды обладают высокой специфичностью по отношению к относительно гидрофобным органическим катионам и анионам. Авторы [351] полагают, что некоторые органические пластифицированные матрицы с ограниченно гидрофильным характером можно использовать в качестве гелеобразующего компонента мембраны. Выбор конкретной матрицы зависит прежде всего от ее совместимости с желаемыми жидкими пластифицирующими компонентами. Эти жидкие компоненты подбираются по их способности сольватировать интересующие аналитика ионы. Для того чтобы электрод обладал высокой специфичностью, необходимы жидкие растворители с особенно высокой степенью специфичности в отношении образования соответствующих сольватов. Время отклика электрода достаточно мало в растворах с концентрацией более 10 М равновесие достигается менее чем за 1 мин. Электрод с поливинилхлоридной (ПВХ) мембраной, пластифицированной М,К-диметилолеоамидом (халькомид 18-ОЬ), имеет нернстову электродную функцию относительно ионов тетрабутиламмония. Электрод с такой же мембраной, как показано на рис, 9.1, характеризуется линейной электродной функцией для анионов тетрафенилбората только в области высоких концентраций. [c.115]

    Таким образом, между органическими гидрофобными ионами и гидрофобными неэлектролитами имеется много общего в отношении взаимодействия их с водой. Интересным примером могут служить результаты исследования термодинамики протонирования метилзамещенных пиперидинов [308]. В этой работе были определены энтальпии реакций протонирования, а также энтальпии гидратации нейтральных аминов. Оказалось, что внутримолекулярные электронные эффекты при изменении положения или числа метильных заместителей (замещение в положениях 2-, 3-, 4- и 2,6-) оказывают пренебрежимо малое влияние на ЛЯрго и практически изменения этих величин при переходе от одного соединения к другому связаны, главным образом, с гидрофобной гидратацией. Косвенно это подтверждается найденной в [308] пропорциональностью между энтальпиями гидратации нейтральных аминов и соответствующих катионов. [c.171]

    Заряженные хелаты. Образование заряженных хелатов катионного или анионного типов в аналитической практике встречается часто. Такие заряженные комплексы органическими растворителями экстрагируются, как правило, только в виде нейтральных тройных комплексных соединений или ионных ассоциатов с присутствующими в водном растворе анионами или катионами соответственно. Анионные хелаты хорошо экстрагируются органическими растворителями в виде ионных ассоциатов с крупными гидрофобными органическими катионами. Этот прием экстракции анионных комплексов получил довольно широкое распростра-ненне [176]. Некоторые общие вопросы экстракции анионных хелатов рассмотрены В. И. Кузнецовым [183]. Экстракция хелатов катионного типа изучена недостаточно, хотя ее значение в аналитической практике и особенно в экстрак-ционно-фотометрическом анализе представляется не менее важным, чем экстракция анионных хелатов, В работах Ю, А. Золотова с сотрудниками [176, 184] [c.125]

    Заряженные хелаты. Образование заряженных хелатов катионного или анионного типов в аналитической практике встречается часто. Такие заряженные комплексы органическими растворителями экстрагируются, как правило, только в виде нейтральных тройных комплексных соединений или ионных ассоциатов с присутствующими в водцом растворе анионами или катионами соответственно. Анионные хелаты хорошо экстрагируются органическими растворителями в виде ионных ассоциатов с крупными гидрофобными органическими катионами. Этот прием экстракции анионных комплексов получил довольно широкое распростра-ненйе [97]. Некоторые общие вопросы экстракции анионных хелатов рассмотрены В. И. Кузнецовым [109]. Экстракция хелатов катионного типа изучена недостаточно, хотя ее значение в аналитической практике и особенно в экстракционнофотометрическом анализе представляются не менее важной, чем экстракция анионных хелатов. В работах Ю. А. Золотова с сотрудниками [97, 110] охарактеризованы условия образования и экстракции хелатов катионного типа. Главным из условий извлечения таких комплексов в органическую фазу авторы указанных работ считают присутствие крупных гидрофобных анионов, образующих с положительно заряженным хелатом экстрагирующуюся ионную пару [97, 109, ПО], хотя в других работах [87, 102, 111—114] показано, что некоторые катионные хелаты хорошо экстрагируются неполярными органическими растворителями и в присутствии таких простых анионов, как СГ, Вг", [, 8СЫ , N0" СНзСОО и др. Возможно, это связано с тем, что в последнем случае экстраги руются не ионные ассоциаты, а нейтральные тройные комплексы. Однако в обоих случаях экстракционные характеристики в значительной степени зависят от химической природы аниоиа-партнера и даже от его концентрации [87, 97]. Поэтому теоретическое прогнозирование оптимальных условий выделения или разделения таких соединений можно осуществить только при наличии надежных сведений о константах экстракции, которые найдены экспериментально при условиях, близких к прогнозируемым по составу солевого фона. Если таких данных в литературе найти не удается, то их необходимо получать экспериментально. [c.173]

    Изложенные соображения о механизме реакции согласуются с отчетливо выраженным ингибирующим действием неорганических катионов на катализируемую ДДС реакцию гидролиза метилортобензоата [111, 143]. В случае катионов щелочных металлов ингибирующее действие повышается с увеличением размеров иона (ионного радиуса). Для катионов щелочноземельных металлов ингибирующий эффект почти не зависит от природы иона. Для ряда н-алкил- и замещенных н-алкиламмониевых ионов степень ингибирования мицеллярного катализа увеличивается параллельно с усилением гидрофобности иона [111]. Эти солевые эффекты можно объяснить, предположив, что при связывании катионов протоны вытесняются из слоя Штерна. Поскольку реакционная способность субстрата по отношению к протону выше на поверхности анионной мицеллы, чем в объеме раствора, то вытеснение протонов в раствор должно приводить к подавлению мицеллярного катализа. Те же соображения использовались для объяснения ингибирующего действия анионов при катализе реакций гидролиза сложных эфиров катионными детергентами [101]. С другой стороны, ингибирование может быть объяснено (частично или полностью) уменьшением электростатической стабилизации переходного состояния вследствие вызванного противоионами снижения степени ионизации сульфатных групп и тем самым поверхностного заряда мицеллы. Величина ускорения гидролиза ортоэфиров ДДС уменьшается с повышением температуры, что, по-видимому, свидетельствует о контроле скорости каталитической реакции энтальпийным фактором [111]. [c.267]

    Следует отметить, что объемная концентрация контактных ионных пар ( 2H5)4N+-Ir l при повышении температуры увеличивается [155]. Поэтому степень ускоряющего влияния гидрофобных органических катионов вида ( 2H5)4N на скорость электровосстановления анионов при повышении температуры должна возрастать , что должно проявляться в высоких положительных значениях температурного коэффициента, однако, исследования в этом направлении, по-видимому, отсутствуют. [c.147]

    Большое значение имеет матрица сорбента при определении гидрофобных сильноудерживаемых ионов. Для их определения следует использовать сорбенты с менее гидрофобными матрицами. В работах [15—17] показано, что при определении сильно удерживаемых катионов щелочноземельных металлов, а также неорганических анионов (1 , S20 , S N , С10 ) и хлорид-ных комплексов платиновых металлов лучше использовать сорбенты на основе кремнезема или полиметакрилата. На этих сорбентах ионы удерживаются слабее, чем на стирол-дивинилбен-зольных. Это объясняется различной гидрофобностью матрицы, которая возрастает в ряду [18] кремнезем <полиметакрилат< <стирол-дивинилбензол. Поэтому для определения гидрофобных ионов надо выбирать менее гидрофобные матрицы. [c.38]

    И. Написать упрощенные графические формулы собирателей—олеиновой кислоты, амилксантогената калия, бутилдитиофосфата, НС1 — соли додециламина, M I—соли октадециламина. Na — соли стеариновой кислоты — с учетом электролитической диссоциации. В формулах прямой линией подчеркнуть гидрофобную, а волнистой — гидрофильную части и изобразить, как ] аспо.тагаются в абсорбционном слое около частицы флотируемого гидрофильного материала молекулы или ионы (auiiom.1, катионы) собирателя (гидрофобную часть — черточкой, гидрофильную — кружком). [c.112]

    Строение мицелл в коллоидной химии принято выражат1> особыми мицеллярными формулами. Так, в обобщенном и упрощенном виде строение любой мицеллы гидрофобного золя можно передать следующими формулами т[ядро] К+(/г— ) А +хА — положительно заряженная мицелла т[ядро]дгА (я—х)К+ хК+ — отрицательно заряженная мицелла, где К+ — катионы А — анионы п — число потенциалопределяющих ионов х — число ионов, находящихся в диффузном слое т — число нейтральных атомов или молекул в ядре. [c.320]

    Очень важная группа ионоселективиых электродов с жидкими мембранами основана на использовании особого класса комплексообразующих реагентов — ионных переносчиков, или ионофоров. Так в калиевом электроде используют макроцикли-ческий антибиотик — валиномицин, образующий прочный комплекс с калием, и гидрофобный катион тетрафенилбората. Такой электрод чувствует калий даже при избытке натрия в 10 раз. [c.244]

    Таким образом, зависимость термодинамических величин q и Ст от л и рассмотренные ИК спектры указывают на начальную фиксацию кислорода молекулы воды на катионах и связывание с ионами кислорода решетки цеолита одного водорода этой молекулы (высокая теплота адсорбции, низкая теплоемкость и узкая полоса валентных колебаний другой свободной группы ОН молекулы воды). Затем идет фиксация молекул воды между катионами К" , что обуславливается располол<ением, концентрацией и гидрофобным характером этих больш-их катионов (см. рис. 2.9). Когда эти возможности исчерпаны, теплота адсорбции падает, а теплоемкость возрастает в соответствии с разрывом при нагревании водородных связей в некоторой части образованных при адсорбции воды ассоциатов. Дальнейший рост q и падение Ст обусловлены, в основном, образованием водородно-связанной сетки ассоциатов воды, фиксированной на поверхностях полостей этого цеолита. Когда образование этих ассоциатов завершено, q снова падает, а Ст растет. Наконец, перестройка сетки ассоциатов при заполнении центральных частей полостей цеолита ведет снова к росту q (уже небольшому) и падению Ст до величины, довольно близкой к теплоемкости жидкой воды. Изменения в инфракрасном спектре при адсорбции воды цеолитом KNaX подтверждают, что с ростом происходит поочередное усиление и ослабление водородной связи. Для цеолита NaX этого не наблюдается. [c.44]

    Депрессоры применяют для подавления флотации примесей с целью повышения селективности процесса. В противоположность собирателям депрессоры уменьшают краевой угол, т. е. повышают гидрофильность материала и замедляют или совсем устраняют прилипание его частиц к пузырькам. Депрессор или препятствует сорбции собирателя, вытесняя его с поверхности твердых частиц, или увеличивает гидрофильность поверхности настолько, что действие п дрофобизирующего собирателя становится не эффективным. Например, флотация силикатов подавляется кислотами, ухудшающими сорбцию анионных собирателей в результате вытеснения с поверхности катионов металлов ионами гидроксония НзО . Крахмал, карбоксиметилцеллюлоза и другие высокомолекулярные органические полимеры с множеством полярных групп, удерживающих молекулы воды, сорбируются на твердой поверхности, и ее гидрофильность увеличивается в большей мере, чем гидрофобность от действия собирателя, углеводородные радикалы которого меньше гидрофильных молекул полимера. [c.330]

    За рубежом интенсивно ведутся исследования по созданию высокоэффективных ПАВ. Наибольшие надежды связываются в настоящее время с созданием ПАВ, совмещающих в себе высокую поверхностную активность и высокую совместимость с пластовыми водами. Такие ПАВ содержат в составе молекулы различные функциональные группы, как например, оксиэтиленовые цепи и сульфо- или сульфонатные группы в сульфоэтоксилатах, карбоксильные в карбоксиметилатах или катионные и анионные группы в амфолитных ПАВ типа бетаинов. Варьируя длину оксиэтиленовых цепей и степень превращения исходного неионогенного продукта в анионный, можно регулировать их свойства применительно к условиям конкретных месторождений. Так, в качестве основного или вспомогательного ПАВ стали применять олигомерические ПАВ. От обычных они отличаются своей молекулярной структурой. Гидрофильную часть молекулы олигомерического ПАВ образуют несколько полярных и ионных функциональных групп, распределенных вдоль углеводородной цепи, которая сравнима по размерам или больше гидрофобной части молекулы [119]. [c.102]

    Главной отличительной чертой такого механизма будет успешное действие катализатора 0+ X с ониевым катионом при очень малом коэффициенте его распределения и практической нерастворимости в органической фазе образовавшейся ионной пары Р+ А . Это возможно в тех случаях, когда аммониевый катион несимметричен. Так, например, бензилтриэтил-аммониевый катион (ТЭБА+) имеет сравнительно мало гидрофобные этильные группы, которые не мешают (а может быть, и помогают) катиону удерживаться на водной поверхности, и липофильную бензильную группу, которая, однако, при добавлении ароматических растворителей сольватируется и становится практически нерастворимой в органической фазе [17]. [c.19]

    В неводных растворах отсутствует гидрофобное взаимодействие и, соответственно, более выгодно образование ионных пар из малых катионов типа и органических ионов. Увеличение донорных свойств растворителя способствует сольватации катиона и увеличивает диссоциацию ионных пар [35]. Уменьшение размеров 0+ повышает устойчьвость ионных пар и уменьшает константу диссоциации. [c.22]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от pH р-ра. Обычно эти ПАВ включают одну нли неск. основных и кислотных групп, могут содержать также и неионогенную полигликолевую группу. В зависимости от величины pH они проявляют св-ва катионактивных или анионактивных ПАВ. При нек-рых значениях pH, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно р-римых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентированные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, Р, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы. [c.587]

    При соответствующих количествах полисахарида и осадителя образующийся комплекс выпадает немедленно при смешении растворов. При добавлении избытка осадителя образуется гидрофобная коллоидная суспензия, которая в отсутствии других электролитов не отделяется центрифугированием от раствора. Частички комплекса имеют положительный заряд вследствие адсорбции небольшого количества положительных ионов аммониевого основания. Добавление одновалентных электролитов, как КС1, Na l, приводит к коагуляции суспензии через час (процесс ускоряется нагреванием). Двухвалентные катионы (Mg++, Са++) в присутствии одновалентных анионов оказывают стабилизирующее действие и не коагулируют суспензию даже при нагревании. Двухвалентные анионы обладают сильным коагулирующим действием. При добавке небольшого количества N32804 происходит коагуляция солей при комнатной температуре через несколько минут. [c.43]

    Неиогюгенные ПАВ типа оксиэтилированных алкилфенолов, спиртов, кислот, не обладающие заряженными функциональными группами, а также катионные ПАВ типа четвертичной соли диэтиламииометилполигликолевого эфира алкилфенолбен-золсульфокислоты (выравниватель А) не сорбируются осадками оксигидратов металлов при pH 6. Однако можно создать условия для поглощения ПАВ типа ОП-10 и выравнивателя А при pH = 6 путем модификации поверхности осадка гидроксида ионами, обладающими развитыми гидрофобными радикалами и способными к ассоциации. Это иллюстрируется данны- [c.23]

    В слабоминерализованном полисахаридно-калиевом растворе более гладкая концентрационная зависимость вязкости обусловлена меньшей интенсивностью электростатического взаимодействия. В данном случае имеет место лишь частичная компенсация зарядов полярных групп полиэлектролитов, приводящая к усилению гидрофобных взаимодействий и упругих свойств раствора. Кроме того, наличие в рассматриваемой буровой системе полигликолей, сольватирующих противоионы ингибиторов, снижает активность последних. Их полиэксиэтиленовые цепи, подобно краун-эфиру, могут связывать ионы соли и превращаться в своего рода ассоциированные катионоактивные ПАВ, способные к взаимодействию с анионными компонентами раствора. Обертывая катионы соли при сольватации, они создают ассоциированные ПАВ, менее подвижные и более гидрофобные, чем нативные катионы (М.Ю. Плетнев). Описанные процессы также способствуют [c.22]

    Добавление нейтральных веществ к водной фазе также является очень эффективным средством влияния на селективность. Добавки циклодекстринов (ЦД) повышают вероятность нахождения вещества пробы в подвижной фазе, поскольку молекулы пробы могут диффундировать в полости ЦД. Если добавлять к подвижной фазе вещества-образователи ионных пар, можно очень сильно влиять на селективность, особенно по ионным соединениям. Если, например, к раствору ДДСН добавить тетраалкиламмонийную соль, вследствие образования ионных пар увеличивается время миграции анионных молекул пробы. Кроме того, уменьшается электростатическое отталкивание от мицелл. Напротив, времена миграции катионных компонентов пробы уменьшаются, т.к. образователь ионных пар проявляет себя как конкурент во взаимодействии с мицеллами. Высокие концентрации мочевины могут увеличить растворимость гидрофобных веществ пробы в воде. [c.86]


Смотреть страницы где упоминается термин Гидрофобные ионы катионы: [c.183]    [c.63]    [c.252]    [c.301]    [c.312]    [c.187]    [c.257]    [c.474]    [c.484]    [c.169]    [c.209]    [c.5]    [c.202]    [c.85]    [c.135]    [c.181]    [c.23]   
Явления переноса в водных растворах (1976) -- [ c.413 ]




ПОИСК





Смотрите так же термины и статьи:

Иониты катиониты



© 2025 chem21.info Реклама на сайте