Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Длины связей и ковалентные радиусы

    Типы химической связи. Ковалентные и ионные связи. Энергия связи, длина связи и атомные радиусы. [c.385]

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Для кратных связей ковалентный радиус уменьшается происходит уменьшение длины связи (А) [c.64]

    Зная расстояния между атомами и углы между связями, можно в простых случаях построить модель молекулы органического вещества и, таким образом, определить ее форму и размеры. При построении модели необходимо помнить, что углеродная цепь молекулы (например, углеводородов парафинового ряда) представляет собой ломаную линию, вследствие чего часть длины молекулы, приходящаяся на один атом углерода, меньше его ковалентного радиуса. Если принять, что ковалентный радиус равен [c.64]

Таблица 7.3. Длины и ковалентные радиусы некоторых связей Таблица 7.3. Длины и <a href="/info/16914">ковалентные радиусы</a> некоторых связей
    Длина связи. Ковалентный радиус атома [c.55]

    Такой расчет основан на представлении об атомах как жестких шарах с постоянными радиусами, сумма которых равна длине связи. Подобные радиусы называют ковалентными радиусами атомов. Ковалентный радиус атома углерода С принимают равным 0,077 нм, атома азота N — 0,070, атома кислорода О — 0,066, атома фтора Г — [c.97]

    Как уже было указано, межядерные расстояния (расстояние между центрами атомов, т. е. длина связей) ковалентно связанных атомов можно вычислить, зная значения их ковалентных радиусов в предельных и этиленовых соединениях межядерные расстояния в связях между соответственно одинаковыми атомами представляют собою примерно постоянную величину (табл. 20 и 22). [c.97]

    Межъядерные расстояния (длина связей) С—С, С1—С1, Н—Н соответственно равны 0,154, 0,198, 0,06 нм. Вычислите ковалентные радиусы атомов углерода, хлора, водорода [c.7]

    Часто при описании строения органических соединений вместо длины связей приводят ковалентные радиусы атомов. Радиус атома угл,ерода (0,77 А) в ординарной связи равен половине межатомного расстояния в кристаллической структуре алмаза. При осуществлении промежуточных связей ковалентный радиус равен [c.346]

    СВЯЗИ, с учетом новых ковалентных радиусов атомов углерода, укорочение связей С — С, обязанное присутствию я-связей, будет равно в этилене и ацетилене 0,079 и 0,133 А соответственно. Кривая порядок связи — длина связи , если последняя берется с поправкой на гибридизацию образующих ее атомов углерода, должна теперь лучше отражать зависимость между этими двумя величинами. Точнее говоря, для каждого значения А, надо строить свою кривую зависимостей между порядком связи и ее длиною или ковалентным радиусом. [c.237]


    Такой расчет основан на представлении об атомах как жестких шарах с постоянными радиусами, сумма которых равна длине связи. Подобные радиусы получили название ковалентных радиусов атомов. Ковалентный радиус атома С принимается равным 0,77А, атома N — 0,70А, атома О — 0,66А, атома Р — 0,64А. Однако это довольно грубый подход к оценке размеров атомов и связей между ними, так как на расстояние между связанными атомами влияют многие факторы, в частности кратность и полярность связи. [c.76]

    Как известно, связи в органических соединениях главным образом атомного типа (ковалентные) и характеризуются направленностью действия, а также углом между этими направлениями. Расстояние между атомами в молекуле можно приближенно рассчитать, суммируя значения ковалентных радиусов атомов. В случае двух одинаковых атомов, связанных друг с другом, ковалентный радиус равен половине расстояния между ними. Так, расстояние между двумя атомами углерода С—С в цепи парафинового углеводорода равно 1,54 А, и, следовательно, ковалентный радиус -атома углерода при ординарной связи равен 0,5-1,54 = 0,77 А. Длина ковалентного радиуса зависит от того, какая связь существует между атомами. Например, для С=С ковалентный радиус атома углерода составляет 0,5-1,20 = 0,60 А. [c.63]

    Межъядерные расстояния в молекулах можно оценить разными методами, в первую очередь сравнением в рядах сходственных соединений. Часто длину связи оценивают как сумму так называемых ковалентных радиусов атомов гдв = Ra + Rb. Так как изолированных атомов в молекуле не существует, естественно, что понятие атомных радиусов является чисто эмпирическим. Разделив пополам межъядерное расстояние в гомонуклеарных двухатомных молекулах I2, ВГа, I2 и других или в кристаллах элементов С, Si и др., определяют радиусы атомов С1, Вг, I, С, Si и др. В эти величины вводят эмпирические поправки, как, например, в Rh или Rp, для лучшего согласия с опытными значениями где. Так получена система ковалентных радиусов Полинга (табл. 8). Для соединений с заметной по- [c.104]

    Особенностями рассматриваемых молекул является то, что длины связей 81—0, 81—С1 и 81-С оказались меньше по сравнению с суммой атомных радиусов. Естественно предположить, что связи кремния с кислородом, хлором и углеродом не являются чисто ковалентными. [c.211]

    Как следует из приведенных данных, увеличение избытка связывающих электронов ведет к возрастанию прочности связи. Межатомные расстояния уменьшаются от Lij к N2, это обусловлено влиянием возрастающего заряда ядра и увеличением прочности связи. Прн переходе от N2 к F2 длина связи растет, это обусловлено ослаблением связи. Сказанное делает понятными закономерности в изменении ковалентных радиусов атомов (см. разд. 1.6). [c.106]

    КОВАЛЕНТНЫЙ РАДИУС — половина длины ковалентной связи между одинаковыми атомами. Расстояние между неодинаковыми атомами в большинстве случаев можно вычислить как сумму К- р. соединенных атомов. Если ввести поправки на разность электроотрицательностей, то сумма увеличится. Ниже приведены К- р. некоторых атомов (А )  [c.130]

    Для молекул АХ Ь2, как уже было описано выше, предсказана и экспериментально подтверждена квадратно-плоскостная структура с эквивалентными длинами связей и углами между связями. До сих пор рассматривались положения, по которым можно предсказать величины длин связей, исходя из основного положения стереохимии — связывающих и неподеленных электронных пар. Однако совсем не обсуждалось, как в действительности изменяются межъядерные расстояния в связи с природой атомов, образующих связь, и кратностью образуемой ими ковалентной связи. На самом же деле использовавшаяся стереохимическая теория в этом отношении беспомощна. В идеальном случае можно приписать каждому атому ковалентный радиус, который будет сохра- [c.221]

    Наряду с ионными радиусами для большинства элементов известны оценки так называемых атомных радиусов и нормальных ковалентных радиусов, применяющиеся для оценки длин связей в существенно неионных соединениях. Как правило, для одного и того же элемента радиус увеличивается при уменьшении степени окисления так, радиус Те + в системе Полинга 0,056 нм, Те + — 0,081 нм нормальный ковалентный радиус Те 0,137 нм и, наконец, радиус Те - 0,221 нм. Таким образом, возникает впечатление, что [c.52]

    Пользование этими и другими ковалентными радиусами (III 6) позволяет приближенно оценивать длины различных углеродных связей. Например, для связей С—С1 получаем 1,77, 1,73 и 1,69 А, Существенное расхождение последней величины с данными опыта (см. выше) обусловлено, по-видимому, сильной поляризацией атома хлора и иллюстрирует возможную ненадежность аддитивного расчета. [c.549]

    ПО) Приведенные выше средние длины связей Si—Э, как правило, меньше сумм соответствующих ковалентных радиусов (III 6). Обусловлено это, по-видимому, полярным характером рассматриваемых связей. Рис. Х-64 показывает, что зависимость сокращения ядерных расстояний от расчетных полярностей связей (III 5 доп. 3) имеет довольно закономерный характер. [c.606]


    Полинг показал, что каждый ковалентно связанный атом занимает определенный объем, в первом приближении не зависящий от природы второго партнера. Поэтому длины ковалентных связей могут быть представлены как суммы ковалентных радиусов связанных атомов. Величины ковалентных радиусов приводятся в табл. 2. [c.17]

    Характерно, что в случае силоксанов длина связи 51—0 совпадает с суммой радиусов атомов кремния и кислорода при двойной связи между ними. При этом каждый атом кислорода связан с двумя атомами кремния, находящимися от него на одинаковом расстоянии. Такая координация возможна при условии, если в связь с атомами кремния вовлечены две неподеленные пары 2р-электронов атома кислорода. При этом образуются донорно-акцепторные 2р —-связи, усиливающие ковалентные а-связи 51 — О. Это в свою очередь приводит к увеличению валентного угла 51 — О — 51, поскольку двойные связи занимают около центрального атома больше места, чем одинарные. Структура чистого кремния тетраэдрическая. Валентный угол равен 109°28. Из кривых распределения электронной плотности следует, что молекулы линейных силоксанов представляют собой цепочки. ..51 — [c.215]

    Составным частям ковалентного соединения можно приписать ковалентный радиус, равный половине длины связи между одинаковыми атомами. Зная, что в карборунде 51С длина связи равна 1,946 А и используя данные табл. 4.8, рассчитайте ковалентный радиус 81. [c.208]

    Что касается длины самой ковалентной связи в двухатомной молекуле, она не может находиться в простой зависимости от радиусов свободных атомов, и это видно уже из того, что последние от В к Р монотонно уменьшаются, а межъядерные расстояния проходят через минимум в случае N 2, с его тройной ковалентной связью. [c.251]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Ван-дер-ваальсов радиус характеризует размер данного атома по отношению к другим атомам, с которыми он не связан химическими связями. Ковалентный радиус соответствует половине длины ковалентной связи между двумя одинаковыми атомами. [c.57]

    Ван-дер-ваальсов радиус характеризует объем несвязанного атома и равен половине расстояния между центрами одинаковых атомов в разных молекулах одного и того- же вещества, на которое могут сблизиться друг с другом эти молекулы. Размер ковалентного радиуса зависит от природы элемента, его валентного состояния и кратности связи. Ковалентный радиус равен половине расстояния, соединяющего два одинаковых атома ковалентной связью. Расстояние между центрами связанных атомов характеризует длину связи. [c.49]

    Если (ради упрощения) изобразить ковалентно связанные атомы в виде соприкасающихся шаров, то, согласно приведенному выше принципу, даииа связи между двумя различными атомами А—В будет равняться среднему арифметическому длин связей А—А и В—В. Таким образом можно вычислить ковалентные радиусы атомов в молекулах, не содержащих сопряженных связей. Ковалентный радиус атома углерода будет равен половине длины простой связи С—С, а ковалентный радиус атома хлора — половине длины связи в молекуле С1г (1,98 А). Таким образом, длина связи С—С1 в несопряженной молекуле равна [c.88]

    Связь 51—С слабополярна (ц = 2-10"Зо Кл-м) в отличие от неполярной связи С—С. Кремний — положительный конец диполя. Длина связи 51—С (0,188—0,192 нм) близка к сумме ковалентных радиусов 51 и С и на 25% больше длины связи С—С. Энергии обеих связей близки по величине. Электроны алкильных заместителей сильно смещены к кремнию. В полидиметилсилоксанах даже при — 196°С метильные группы с необычайной легкостью вращаются вокруг связей 51—С, тогда как вращение фенильных групп в метилфенил- и дифенилсилоксанах полностью заторможено при низких температурах, а в последних не является совершенно свободным и при 20 °С [3, с. 11]. [c.463]

    На таком моделировании атомов основано построение атомных моделей, из которых можно собирать модели молекул. При этом, однако, нужно учесть, что ван-дер-ваальсовы радиусы соответствуют сближению атомов, не образующих химической связи. При образовании ковалентной связи атомы сближаются на значительно меньшее расстояние. Например, длина связи в молекуле НС1 равна 0,172 нм при сумме ван-дер-ваальсовых радиусов 0,30 нм. Оказывается, что с хорошей точностью каждому атому можно приписать ковалентный радиус, причем при образовании химической связи между атомами длина связи будет равна сумме их ковалентных радиусов. В табл. 17 приведены ковалентные и ван-дер-ваальсовы радиусы некоторых атомов. [c.115]

    Гиллеспи, по нашему мнению, не имеет принципиальных преимуществ перед концепцией гибридизации в методе локализованных пар и не всегда ее предсказания верны Наконец, всегда остается возможность оценить конфигурацию молекз лы сравнительным методом, основанным на периодическом законе, и это один из наиболёе надежных способов. Тем же методом вполне удовлетворительно оцениваются и межъядерные равновесные расстояния [к-42]. Можно также переносить значения длины связи из простейших мадгекул в более сложные, если не требуется высокой точности. Часто длину связи оценивают как сумму так называемых ковалентных радиусов атомов + Так как изолированных атомов в молекуле не существует, естественно, что понятие атомных радиусов является чисто эмпирическим. Разделив пополам межъядерное расстояние в гомонуклеарных двухатомных молекулах С12, Вг2, Гд и других или в кристаллах элементов С, 81 и других, находят радиусы атомов С1, Вг, I, С, 81 и др. В эти величины вводят эмпирические поправки, как, например, в Лд или, для лучшего согласия с опытными значениями Гдв Так получена система ковалентных радиусов Полинга. Для соединений с заметной полярностью связи используют формулу Шумейкера — Стивенсона  [c.203]

    Сокращение длины связей 81—О и 81—С1 можно объяснить исходя из валентных возможностей атомов кремния, хлора и кислорода. Известно, что атом кремния, валентное состояние которого описывается Ззр -гибридизацией, обладает акцепторными свойствами. У него все Зй-орбитали вакантны. Атомы кислорода и хлора обладают донорными свойствами. Они имеют неподеленные пары электронов.В процессе образования ЗЮЦ, 81(ОСгН5)4 и других подобных молекул неподеленная пара электронов донора переходит на Зй-орбиталь акцептора, которая становится общей как для донора, так и для акцептора. В результате этого возникает дополнительная связь между ними. Логично считать, что в подобных молекулах ковалентные связи атома 81 с атомами О или С1 усилены донорно-акцепторным взаимодействием. При такой двоесвязности сумма атомных радиусов близка к экспериментальному значению. Таким образом, наблюдаемое укорочение связей 81—0, 51—С1 и 81—С теоретически обосновано. Эти примеры показывают, что предсказать заранее значение той или иной длины связи не всегда возможно. Следовательно, экспериментальное определение геометрических параметров молекул является задачей весьма актуальной. С другой стороны, при интерпретации опытных значений длин связей необходим учет всех валентных возможностей взаимодействующих атомов. [c.212]


Смотреть страницы где упоминается термин Длины связей и ковалентные радиусы: [c.32]    [c.43]    [c.223]    [c.105]    [c.181]    [c.168]    [c.78]    [c.98]    [c.22]    [c.78]    [c.82]    [c.86]   
Смотреть главы в:

Основы неорганической химии  -> Длины связей и ковалентные радиусы




ПОИСК





Смотрите так же термины и статьи:

Длина связи

Ковалентной связи длина

Ковалентность

Радиусы ковалентные

Связи ковалентные Связи

Связь ковалентная



© 2024 chem21.info Реклама на сайте