Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение квантовых выходов флуоресценции и фосфоресценции

    Измерение квантовых выходов флуоресценции и фосфоресценции [c.158]

    В этом случае график Штерна — Фольмера (зависимость 1//иа.г от [М]) будет иметь в точке пересечения значение (1-ЬА1/Л)/ погл и производную ikq[N. ]/A)[ j,onu поэтому kq/A нельзя определить без измерения / эл и /погл. Однако необходимо знать только отношение /изл//погл, а не абсолютные значения интенсивностей. Следует заметить, что если энергетические спектры возбуждения и излучения не идентичны, то необходимо измерять отношение потоков квантов, а не отношение потоков энергии. Отношение /изл//погл есть квантовый выход ф1 процесса люминесценции (фг — квантовый выход флуоресценции, фр — квантовый выход фосфоресценции), поэтому значение модифицированной кривой Штерна — Фольмера 1/ф —[М] в точке пересечения будет определять отношение скоростей радиационных и безызлучательных процессов. Следовательно, в идеальном случае можно определить скорость внутренней и интеркомбинационной конверсии в люминесцирующей системе. [c.88]


    Измерения времени затухания люминесценции и квантового выхода дают информацию об относительных вероятностях различных процессов испускания и безызлучательной конверсии. Время жизни флуоресценции обычно лежит в области от 10 до 10 се/с, хотя имеются соединения, такие, как нафталин, у которых время жизни значительно больше и составляет 10 —10 сек. Время жизни фосфоресценции в большинстве случаев лежит в интервале от 10 сек до нескольких секунд. [c.89]

    Абсолютные значения квантовых выходов флуоресценции или фосфоресценции можно рассчитывать по данным измерений в одних и тех же произвольных единицах интенсивности поглощаемого и испускаемого света. Должны быть сделаны поправки на различия в пространственном и спектральном распределениях возбуждающего света и испускаемого излучения, необходимо также знать кривую спектральной чувствительности фотоприемника. Направленный возбуждающий пучок можно рассеять для сравнения с изотропным испускаемым излучением с помощью матовой поверхности или, лучше, с помощью белкового раствора, рассеивающую силу которого можно рассчитать. Процедура коррекции спектрального распределения испускаемого излучения может быть упрощена. Для этого испускаемое излучение образца и рассеянный возбуждающий свет надо последовательно направить на подходящее флуоресцирующее вещество, которое преобразует все падающее излучение в свой собственный спектр флуоресценции с постоянным [c.192]

    Рассмотренные в разделах 5.1.1 и 5.1.2 соотношения позволяют исходя из измеренных квантовых выходов и и времен жизни флуоресценции и фосфоресценции вычислять излучательные времена жизни состояний 5 и Г) и константы скоростей безызлучательных переходов с этих состояний. [c.115]

    Для количественных определений квантовых выходов, необходимых в физической и физико-органической фотохимии, требуется довольно сложное оборудование. При таких измерениях необходимо использовать регулируемый источник монохроматического света, хорошо отлаженную оптическую схему и удобную фотолитическую кювету, через которую проходит пучок света, приспособление для измерения как абсолютной интенсивности падающего света, так и доли этого света, которая поглощается реагентом. Необходимо также количественно определять число молекул образовавшегося продукта или число квантов, испускаемых в виде флуоресценции или фосфоресценции. Мы рассмотрим экспериментальные методы и оборудование для измерения квантовых выходов, а также специальную методику вращающегося сектора, импульсный фотолиз, измерения при низких температурах в матрицах, измерения времени жизни флуоресценции. [c.551]


    Материал этой части главы разбит по разделам возбуждение, приготовление образцов, измерения и разнообразные методические приемы. Вначале рассмотрены главным образом вопросы выбора источников света, интенсивности света и выделения выбранных спектральных интервалов при помощи фильтров и монохроматоров. Кроме возбуждения действием света, существует множество других методов возбуждения, включая возбуждение рентгеновскими лучами, гамма-лучами, электронами и другими быстрыми частицами. Однако в большинстве исследований по люминесценции для возбуждения используют видимый и ультрафиолетовый свет. Поглощение света значительно более селективно, чем другие методы, а так как последние с большей полнотой рассмотрены в ряде уже опубликованных работ, то мы ограничимся здесь только первым методом. Приготовление образцов включает очистку веществ, приготовление твердых стекол, низкотемпературную методику и выращивание монокристаллов. В следующем разделе описана аппаратура для регистрации флуоресценции и фосфоресценции, для измерения времени жизни и квантового выхода. Прингсгейм [17] в своей монографии Флуоресценция и фосфоресценция дает хорошее представление о методах эксперимента, применявшихся примерно до 1949 г. Исчерпывающий обзор по спектроскопии и спектрофотометрии в видимой и ультрафиолетовой области дан Вестом [33]. Более специфичные вопросы, связанные с определением флуоресценции и фосфоресценции, источниками света, приемниками, флуориметрами, приборами для регистрации спектров флуоресценции и фосфоресценции и для измерения времени жизни и квантового выхода рассмотрены Вотерспуном и Остером [35]. Исчерпывающая библиография, собранная Липсетом [36], содержит ссылки на работы, в которых рассматриваются вопросы методики исследования переноса энергии и сходных явлений. [c.81]

    Квантовый выход или квантовая эффективность процесса — это отношение числа квантов, участвующих в процессе, к числу квантов, предварительно поглощенных системой. Таким образом, определение квантового выхода флуоресценции Фр или просто выхода флуоресценции требует измерения полного числа квантов, излученных при флуоресценции. Выход фосфоресценции Фр определяется аналогичным образом. Можно также определить аналогичные выходы для процессов, которые не связаны с испусканием квантов в виде света. Например, выход образования триплетного состояния Фт есть отношение числа молекул, перешедших в триплетное состояние, к числу предварительно поглощенных квантов. Фт не обязательно равно Фр. Последнее измеряет только число молекул в триплетном состоянии, которые возвращаются в основное состояние излучательным путем, испуская фосфоресценцию. Эти две величины равны друг другу лишь в отсутствие безызлучательных процессов дезактивации, которые конкурируют с фосфоресценцией. Однако если записать все внутренние и внешние пути, по которым возбужденная молекула теряет энергию, то сумма соответствующих выходов будет равна единице, при условии что полное число молекул в системе сохраняется. Конечно, при этом учитываются только молекулы, кванты электронной энергии которых либо проявляются в виде фотонов, либо превращаются в теплоту, и не учитывается ряд колебательных квантов, появляющихся в результате такого превращения. [c.91]

    Измерение фотолюминесценции — это чувствительный и гибкий метод химического анализа. Поэтому, выбирая метод анализа для измерения квантовых выходов или идентификации продуктов фотохимической реакции, следует обсудить и возможность применения фотолюминесценции. Часто при помощи прямых измерений флуоресценции удается следить за расходом исходного реагента или накоплением продукта (например, карба-зола из дифениламина [131]). В некоторых системах перед идентификацией необходимо провести разделение смеси продуктов, и если можно вызвать их флуоресценцию или фосфоресценцию, то фотолюминесценцию можно использовать для определения малых количеств веществ, которые могут быть разделены при помощи, например, тонкослойной или газовой хроматографии. Такие измерения представляют собой, по сути дела, аналитическое применение флуоресценции и фосфоресценции и рассматриваются в гл. V. В данном разделе мы обсудим некоторые специфические применения фотолюминесценции в фотохимических исследованиях. [c.367]

    Триплеты диацетила имеют квантовый выход 0,25 для флуоресценции, а измеренное время жизни триплетного состояния равно 10 с. Если фосфоресценция диацетила тушится соединением Q со скоростью, определяемой диффузией (10 М -С ), то какая концентрация Q требуется для уменьшения выхода фосфоресценции вдвое  [c.562]

    Ранее было замечено (стр. 121), что фосфоресценция, обусловленная триплет-синглетными переходами, обычно не наблюдается в жидких растворах, так как триплетное состояние имеет сравнительно большое естественное радиационное время жизни, и дезактивация в результате столкновений происходит чаш е, чем эмиссия. Оказалось возможным, однако, наблюдать фосфоресценцию эозина в глицерине или этаноле и измерить отношение ее интенсивности к интенсивности флуоресценции [44]. Это было сделано при помощи спектрофлуориметра и двух вращающихся секторов, один из которых служил для прерывания пучка возбуждающего света, другой — для прерывания пучка излученного света. Когда оба прерывателя находятся в одинаковой фазе, измеренная интенсивность обусловлена фосфоресценцией плюс флуоресценцией если они в разных фазах — то только фосфоресценцией. Это очень перспективный метод для определения скоростей перехода между триплетным и синглетным состояниями. По сравнению с флеш-методом он имеет то преимущество, что для облучения можно использовать монохроматический свет с различной частотой, кроме того, можно точно измерить квантовые выходы наконец, стационарная концентрация молекул в триплетном состоянии мала, и поэтому можно пренебречь триплет-триплетным тушением. С другой стороны, если естественное время жизни велико или тз шение сильно, эмиссия будет очень слабой [c.165]


    Легко экспериментально определить квантовые выходы излучательных процессов (флуоресценции, фосфоресценции). Прн помощи импульсного фотолиза можно измерить времена жизни триплетных состояний. Измерение времен жизни флуоресценции требует большего временного разрешения (например, наносекундной спектроскопии). Скорости процессов безызлучательной дезактивации и переноса энергии обычно непосредственно измерять не удается (ср. раздел 5.2.3). [c.109]

    Для выяснения механизм-ов фотохимических реакций необходимо определять квантовые выходы. Обычно нужны дополнительные специальные измерения, например, времен жизни флуоресценции, фосфоресценции, радикальных промежуточных продуктов. При этом в первую очередь обращают внимание на то, чтобы условия измерений обеспечивали требуемую точность, а затем уж заботятся об экономии времени и материалов. [c.125]

    В отсутствие конкурирующих безызлучательных процессов время жизни флуоресценции или фосфоресценции равно времени жизни, полученному из силы осциллятора обратного процесса поглощения. В случае флуоресценции имеется хорошее согласие между этими двумя величинами. Однако триплетное состояние вследствие присущего ему большого времени жизни особенно чувствительно к безызлучательным процессам тушения, и часто измеренный ряд значений времени жизни относится как раз к этим процессам, а не к процессу испускания. Наличие безызлучательных процессов доказывается прежде всего квантовым выходом фосфоресценции. Если этим путем разрушается только триплетное состояние, то состоянию соответствует диаграмма на рис. 8, где буквами Ф обозначены квантовые выходы для различных процессов, а буквами k — соответствующие константы ско- [c.92]

    В предыдущем параграфе мы показали, как кинетические данные и измерения квантовых выходов можно использовать для оценки величины вклада тех или иных фотохимических процессов (4.10) — (4.17). Однако особенность стационарных кинетических расчетов состоит в том, что они определяют выражения лишь для отношения констант скорости например, выражения интенсивностей или квантовых выходов в уравнениях (4.6), (4.9), (4.18) и (4.19) всюду включают отнощения констант скорости к коэффициенту А Эйнщтейна для скорости спонтанной эмиссии. Абсолютные значения констант скорости могут быть часто определены из сравнения кинетических данных, полученных в стационарных условиях, с их значениями, полученными в нестационарных условиях. В рассматриваемом нами случае нестационарные измерения часто состоят в измерении времени жизни флуоресценции (т() и фосфоресценции [c.89]

    В гл. И было кратко обсуждено тушение флуоресценции растворенным кислородом, а примеры этого тушения приведены в гл. V. Обычные растворители, насыш,енные воздухом, содержат около 10 М кислорода. Степень тушения флуоресценции этим кислородом варьирует от 1% для соединений, имеюших сильную первую полосу поглощения и низкий квантовый выход флуоресценции, до 95% для веществ с долгоживущей флуоресценцией. Тушение кислородом фосфоресценции и замедленной флуоресценции намного больше, поэтому необходимы специальные предосторожности, описанные в разделе III, И, 2. Тушение флуоресценции кислородом можно легко предотвратить, пропуская в раствор перед измерением азот из баллона (содержание кислорода менее 10 %). В большинстве случаев достаточно закрыть кювету плотной крышкой со стеклянной трубкой для ввода газа. Для более сильного обескислороживания кювету надо закрывать стеклянной пробкой с вводной трубкой. Для присоединения кюветы к баллону с газом лучше всего использовать шланг из полиэтилена или гибкую металлическую трубку, а не резиновые шланги. Если проводятся точные измерения и если процесс откачивания занимает значительное время, газ необходимо заранее насыщать парами растворителя для предотвращения потерь за счет испарения. [c.224]

    В присутствии значительно больших концентраций второго лю-минесцирующего вещества (см. гл. V). С другой стороны, степень чистоты вешеств, используемых для исследования люминесценции, должна быть очень высокой, по крайней мере по отношению к некоторым классам примесей. Так, при определении спектра испускания быстрой флуоресценции соединения, имеющего малый квантовый выход флуоресценции и малый коэффициент погашения при длине волны возбуждающего света, присутствие 0,1% примеси, имеющей большой квантовый выход флуоресценции и высокий коэффициент погашения, может полностью исказить результаты. Аналогичные рассуждения применимы и к определению испускания фосфоресценции в твердом растворе нри низкой температуре. Поэтому желательно проверять чистоту путем измерения спектра флуоресценции при нескольких длинах волн возбуждения. Если при этом наблюдается изменение формы спектра, то можно предполагать присутствие второго флуоресцирующего вещества. К вновь появляющимся полосам флуоресценции также нужно относиться осторожно и тщательно проверять, не обусловлены ли они примесями. [c.271]

    Выход фосфоресценции измеряется по существу теми же методами, но приемник должен суммировать свет, испущенный в течение всего времени жизни люминесценции. Кроме того, если для отсечки флуоресценции используется вращающийся затвор, то следует принять во внимание эффективную оптическую плотность затвора. Джилмор, Гибсон и Мак-Клюр [100] сообщили об измерениях абсолютного квантового выхода флуоресценции и фосфоресценции некоторых ароматических соединений в ЭПА при 77° К-В их статье подробно рассмотрена конструкция прибора и необходимые экспериментальные поправки. [c.92]

    При измерениях быстрой флуоресценции и фосфоресценции в жидких растворах не требуется точно знать скорость поглощения Бозб.уждающего света, если только определение выходов флуоресценции не производится абсолютными методами и не изучаются фотохимические изменения. Однако интенсивность некоторых типов замедленной флуоресценции пропорциональна квадрату скорости поглощения света (т. е. квантовый выход пропорционален первой степени скорости поглощения света). Кажущиеся выходы быстрой флуоресценции и фосфоресценции также могут зависеть от интенсивности в твердых средах при низкой температуре, где времена жизни триплетов велики и большая доля растворенного вещества может находиться во время облучения в триплетном состоянии. Для проведения количественных исследований в таких системах необходимо точно измерить скорость поглощения света растворенным веществом. Для этой цели возбуждающий свет фокусируется на отверстие подходящей формы и размеров так, чтобы отверстие равномерно освещалось светом. Четкое изображение отверстия фокусируется затем на ту часть образца, где наблюдается люминесценция. Затем с помощью ферриоксалатного актинометра измеряется общий поток возбуждающего света, проходящий через отверстие. Измеряют площадь изображения отверстия и вычисляют интенсивность освещения образца (эйнштейн/см ). Зная эту величину и измерив оптическую плотность на 1 см при нужной длине волны, определяют скорость поглощения света. Необходимо учитывать эффект внутреннего фильтра, используя фактор (см. раз- [c.267]

    Интеркомбинационная конверсия. Для тех безызлучательных переходов, которые происходят между состояниями различной мультиплетности, как, например, 1-> Г, Каша [1151 предложил название интеркомбинационная конверсия. Схематически этот процесс показан на рис. 7. Он обусловливает как образование триплетного состояния (51-> Т ), так и последующую дезактивацию ( 1 5 ), а также и медленную флуоресценцию , упомянутую выше. Высокие квантовые выходы фосфоресценции и, следовательно, большая вероятность образования триплетного состояния для некоторых молекул указывают на то, что константа скорости перехода 51 Т по порядку величины сравнима с константой скорости флуоресценции, а именно примерно 10 сек" . С другой стороны, измерения времен жизни триплетных состояний в растворе [107, 128а, 167] показывают, что для аналогичной интеркомбинационной конверсии (Г1->5 ), которая ответственна за дезактивацию триплетного состояния, константа скорости меньше [c.76]


Смотреть страницы где упоминается термин Измерение квантовых выходов флуоресценции и фосфоресценции: [c.384]    [c.91]    [c.105]    [c.176]    [c.67]    [c.97]    [c.153]   
Смотреть главы в:

Введение в фотохимию органических соединений -> Измерение квантовых выходов флуоресценции и фосфоресценции




ПОИСК





Смотрите так же термины и статьи:

Выход флуоресценции

Измерение квантового выхода флуоресценции

Квантовый выход

Флуоресценция

Флуоресценция квантовый выход

Фосфоресценция

Фосфоресценция квантовый выход



© 2025 chem21.info Реклама на сайте