Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал стеклянной мембраны

    Изменение потенциала стеклянной мембраны, вызванное наличием в растворе с одной ее стороны иона натрия, будет равно  [c.282]

    Показано, что суммарный потенциал стеклянной мембраны возникает за счет двух источников. Во-первых, из-за различия потенциалов на поверхностях раздела фаз, связанного с ионообменными процессами на внутреннем и внешнем гидратированных гелевых слоях, находящихся в контакте с водой. Во-вторых, из-за диффузионных потенциалов схожих с жидкостными диффузионными потенциалами, которые обусловлены различной подвижностью протонов и ионов лития (или других катионов щелочных металлов) внутри внутреннего и внешнего гидратированных гелевых слоев. Однако, если протоны полностью насыщают все ионообменные центры, на обеих поверхностях гидратированных гелевых слоев, как и должно быть в правильно функционирующем электроде для определения pH, и если обе поверхности гелевых слоев идентичны по своим физическим характеристикам, то два диффузионных потенциала должны компенсироваться. Тогда суммарный потенциал стеклянной мембраны будет представлять собой сумму двух потенциалов на поверхностях раздела фаз Е и Е2, показанных на рис. 11-4, т. е. [c.374]


    В промышленных и обычных лабораторных приборах вместо водородного широко применяется стеклянный электрод. Он состоит из тонкостенной колбочки (пузырька), изготовленной из мягкого стекла, содержащей соляную кислоту, в которую погружен маленький серебряный электрод. Цепь заканчивается каломельным или хлорсеребряным электродом. Потенциал стеклянной мембраны, в основном, пропорционален величине pH раствора. Однако при высоком соотношении ионов натрия и водорода ионы натрия внедряются в мембрану, что приводит к неверным результатам. По этой причине едкое кали при потенциометрическом титровании предпочтительнее нежели едкий натр, так как относительно высокое содержание ионов калия не влияет значительно на точность показаний. Гидрат окиси тетра-этиламмония дает еще меньшую ошибку, чем едкое кали, однако растворы его неудобны для практического использования вследствие их нестойкости. [c.22]

    Суммарный потенциал стеклянной мембраны будет равен м = , - 2 = - 2 + 1л , [c.199]

    IX.5. ПОТЕНЦИАЛ СТЕКЛЯННОЙ МЕМБРАНЫ [c.287]

    Фд — В соответствии с применяемыми далее обозначениями — электрический потенциал стеклянной мембраны  [c.22]

    Анионы раствора не влияют на величину разности электрических потенциалов, так как оии не проникают внутрь стекла. Необходимо отметить еще одну особенность стеклянного электрода. Если по обе стороны тонкой стеклянной мембраны (или пленки) находятся растворы с одинаковой концентрацией то в цепи IV мембранный потенциал должен быть равен нулю. Однако в этом случае всегда наблюдается скачок потенциала, который называется потенциалом асимметрии. Это означает, что на внутренней и внешней поверхностях стеклянного электрода возникают различные по величине потенциалы, что объясняется различием свойств внутренней и внешней поверхностей, возникающим, вероятно, при изготовлении электрода. Поэтому при измерении pH растворов стеклянным электродом необходимо учитывать потенциал асимметрии или определять pH по калибровочной кривой. Для уменьшения потенциала асимметрии стеклянные электроды длительное время выдерживают в воде или в растворе 0,1 и. H I. [c.578]

    Точное значение pH можно определить, измерив э.д.с. гальванического элемента, имеющего электрод, потенциал которого зависит от концентрации ионов водорода. В качестве такого электрода обычно используют так называемый стеклянный электрод, действие которого основано на свойстве тонкой стеклянной мембраны быть проницаемой только для ионов водорода. [c.257]


    Из уравнения (176.23) видно, что потенциал границы раствор — стекло зависит от активностей ионов ан+ и ама+ в растворе, т. е. поверхность стеклянной мембраны обладает свойствами и водородного, и [c.485]

    При одинаковом составе растворов следует ожидать равенства Фс и фс. Однако поверхности стеклянной мембраны различны по своим свойствам, обусловленным главным образом механической, термической обработкой в процессе изготовления электрода. Разность фс и фс в этих условиях называется потенциалом асимметрии стеклянного электрода, является его индивидуальной характеристикой и входит в величину стандартного потенциала стеклянного электрода. [c.486]

    Обычно стеклянный электрод изготовляют в виде шарика из тонкой мембраны, в который вводят хлорид-серебряный электрод и раствор соляной кислоты. Внешняя поверхность стекла соприкасается с исследуемым раствором. Потенциалы на каждой из поверхностей стеклянной мембраны обусловлены соответствующими реакциями обмена. Однако на одной из них (внутренней) он остается постоянным, а на другой (внешней) зависит от состава испытуемого раствора. Таким образом, потенциал стеклянного электрода представляет собой разность потенциалов между внутренней и внешней поверхностями мембраны. Если бы они были идентичными, то при использовании одного и того же раствора внутри шарика и с его внешней стороны эта разность должна быть равной нулю. В действительности же вследствие ряда причин появляется некоторая разность потенциалов, называемая потенциалом асимметрии и включаемая в величину его стандартного потенциала. Различия двух поверхностных слоев стеклянного электрода связаны с потерей щелочи при тепловой обработке стекла, дегидратацией поверхности при высушивании или продолжительной выдержке в дегидратирующем растворе, с механи-- [c.52]

    Потенциал (ст.) недоступен измерению, но разность потенциалов между двумя растворами, расположенными с двух сторон стеклянной мембраны, может быть измерена. [c.160]

    Скачок потенциала на внутренней поверхности стеклянной мембраны имеет постоянную величину, а на внешней меняется в зависимости от активности ионов Н+. Сама стеклянная мембрана способна проводить ток. Переносчиками зарядов являются катионы. [c.241]

    Граница стекло — раствор оказывается, таким образом, проницаемой только для катионов. Равновесие (Т) устанавливается на обеих сторонах стеклянной мембраны, и в нем участвуют сравнительно небольшие по толщине поверхностные слои стекла. Проводимость пространства между этими слоями обеспечивают ионы Na+. Так как с внутренней стороны состав раствора сохраняется постоянным, то постоянен и соответствующий мембранный потенциал. Поэтому в дальнейшем будем рассматривать равновесие (Т) только на внешней стороне мембраны. [c.136]

    Большим достижением в методике определения концентрации водородных ионов являлось изобретение стеклянного электрода. Еше в 1906 г. Кремер заметил, что тонкая стеклянная мембрана, разделяющая два раствора, обнаруживает скачок потенциала, зависящий от концентрации Н+-ионов. Более детальное исследование показало, что потенциал такой мембраны зависит также от концентрации других ионов (Ыа+, К+, КЬ+ и Сз+), от состава и толщины стекла и температуры. [c.190]

    Обычно стеклянный электрод делают в виде шарика, в который вводят хлор-серебряный электрод и раствор соляной кислоты. Таким образом, получается полуэлемент, который погружают в исследуемый раствор (рис. 9). Потенциал стеклянного электрода представляет собой разность потенциалов на обеих сторонах стеклянной мембраны. Если бы обе стороны мембраны были абсолютно идентичны, то при применении одинаковых электродов сравнения (цепь 1.33) э. д. с. цепи была равна нулю. Однако вследствие потери щелочи при тепловой обработке в процессе изготовления стеклянного шарика, дегидратации поверхностного слоя вследствие высушивания или вследствие продолжительной выдержки в дегидратирующем растворе, вследствие механического разрушения поверхностного слоя или химического протравливания щелочами или фтористым водородом поверхности стеклянной мембраны различны, что приводит к возникновению так называемого потенциала асимметрии. Этому способствует также неодинаковое механическое напряжение на двух сторонах стеклянной поверхности. [c.21]

    Уравнение для гальвани-потенциала ионообменной мембраны (стеклянной), соприкасающейся с раствором, который содержит [c.520]

    Действие стеклянного электрода можно объяснить, например, при помощи ионообменной теории, предложенной Б. П. Никольским между поверхностным слоем мембраны и раствором, в который погружается электрод, происходит обмен ионами. Стекло отдает катионы Ма+, получая взамен Н+, в результате устанавливается равновесие, определяемое концентрацией этих ионов в стекле и растворе и коэффициентом их распределения в этих двух фазах. В кислых растворах ионы N3 - в стекле почти полностью вытесняются ионами Н+ и стеклянный электрод работает подобно водородному электроду. В щелочных растворах, наоборот, в стекле преобладают ионы Ыа+ электрод действует как натриевый. Таким образом, на границе раздела стеклянная мембрана — исследуемый раствор возникает потенциал, величина которого зависит от концентрации водородных ионов (и, следовательно, pH) в растворе. Этот потенциал можно отнести к межфазовым потенциалам. Потенциал на стеклянной мембране электрода быстро устанавливается и не зависит от присутствия окислите.1ей и восстановителей, солей и т. п. Стеклянным электродом можно пользоваться в большом интервале значений pH —от —2 до 12. Свойства мембран у [c.66]


    Стеклянные мембраны обладают очень большим сопротивлением, ввиду чего приходится для определения потенциала стеклянного электрода усиливать ток с использованием электронных усилителей, что предусмотрено в схемах современных рН-метров. Шкала таких приборов обычно градуируется как в мв, так и в единицах pH. [c.67]

    На стабильность водородной функции электрода заметное влияние оказывает так называемый потенциал асимметрии. Если по обе стороны стеклянной мембраны помещен один и тот же раствор, в который опущены одинаковые вспомогательные электроды, то в такой ячейке будет возникать небольшая разность потенциалов. Поскольку потенциалы двух вспомогательных электродов равны по значению и противоположны по знаку, эта разность потенциалов должна быть обусловлена неодинаковыми свойствами поверхностных слоев мембраны, т. е. ее асимметрией. [c.255]

    Еще в 1906 г. Кремер заметил, что тонкая стеклянная мембрана, разделяющая два раствора, обнаруживает скачок потенциала, зависящий от концентрации Н+-ио-нов. Потенциал такой мембраны зависит также от состава и концентрации других ионов (Na+ К+, РЬ2+, Сз+), толщины стекла и температуры. [c.199]

Рис. 12.2. Схема двух электродов, входящих в рН-метр со стеклянным электродом. Стеклянная мембрана изготовлена из специального стекла, через которое могут свободно проникать ионы водорода. Потенциал этого электрода зависит от концентрации ионов водорода в среде, окружающей стеклянную мембрану, Рис. 12.2. Схема <a href="/info/1696521">двух</a> электродов, входящих в рН-метр со <a href="/info/3602">стеклянным электродом</a>. <a href="/info/134108">Стеклянная мембрана</a> изготовлена из <a href="/info/8439">специального стекла</a>, через которое могут свободно <a href="/info/1410409">проникать ионы</a> водорода. Потенциал этого электрода зависит от <a href="/info/14574">концентрации ионов водорода</a> в среде, окружающей стеклянную мембрану,
    Для измерения pH используют систему, состоящую из анализируемого раствора снаружи мембраны и раствора с постоянным значением pH внутри шарика. В оба раствора вводят электроды сравнения. Потенциал на каждой стороне стеклянной мембраны определяется реакцией обмена, однако внутри шарика он остается постоянным, а снаружи меняется при изменении состава исследуемого раствора. [c.55]

    Из приведенных примеров видно, что водородная функция стеклянного электрода нарушается в сильнощелочной и в сильнокислой области. Для большинства электродов в кислых растворах ошибка в измерении pH становится заметной только при pH < 2 и достигает достаточно большой величины при pH, близких к нулю. Кислотная ошибка приводит к завышению результатов определения pH по сравнению с истинными. Ее природа до сих пор детально не выяснена. Одно из предположений состоит в том, что в кислой среде с высокой ионной силой активность воды по обеим сторонам стеклянной мембраны не остается одинаковой, и поэтому в воде возникает концентрационная ячейка, потенциал которой также входит в измеряемую разность потенциалов. Кислотные ошибки трудно устранить, но, к счастью, они невелики. [c.187]

    Для измерения потенциала стеклянного электрода его включают в цепь с электродом сравнения и помещают в исследуемый раствор. Потенциал каждой из сторон стеклянной мембраны обусловлен соответствующими реакциями ионного обмена. На одной из них (внутренней) он остается постоянным, а на другой (внешней) зависит от состава раствора. Таким образом, потенциал стеклянного электрода представляет собой разность потенциалов между двумя поверхностями мембраны. Если бы они были идентичными, то для одного и того же раствора внутри электрода и с его внешней стороны потенциал должен был бы равняться нулю. Однако на практике для стеклянного электрода наблюдается некото- [c.187]

    Экспериментально найдено, что потенциал этого стеклянного электрода изменяется с изменением активности водородных ионов таким же образом, как и потенциал водородного электрода, т. е. на 0,0591 В на единицу pH при 25° С. Из-за большого сопротивления стеклянной мембраны электрода для измерения э. д. с. нельзя пользоваться обычным потенциометром, а нужно применять электронный вольтметр. Разработаны электронные схемы и на их основе сконструированы достаточно компактные приборы, которые позволяют измерять значения pH с точностью до 0,01 единицы pH. Прибор рН-метр, как его обычно называют, перед измерением pH неизвестного раствора калибруется по буферным растворам с известными значениями pH. Теория стеклянного электрода и способы его использования подробно описаны Бейтсом [1]. [c.201]

    Потенциал асимметрии обусловлен различием внешней и внутренней поверхностей стеклянной мембраны и устраняется градуировкой электрода гю буферам с известным pH. [c.401]

    Потенциал асимметрии. Если стеклянный электрод погрузить в такой же стандартный раствор, который налит внутрь электрода, то окажется, что потенциал наружной поверхности стеклянной мембраны ( з) не равен потенциалу внутренней поверхности Е2). Разность этих потенциалов ( а) называется потенциалом асимметрии стеклянного электрода Еа = Ез—Е . Величина 5а достигает 10—20 мв. [c.126]

    Впервые обратимость потенциала стеклянной мембраны к ионам водорода наблюдали Габер и Климансиевич (1909—1910 гг.). Исследуя электро-кинетические явления на поверхности стекла, они определили величину термодинамического потенциала стеклянной поверхности и нашли, что этот потенциал является функцией pH раствора. Эти наблюдения Габера и Кли-мансиевича послужили основанием для ряда работ по теории и практике применения стеклянных мембран для определения pH растворов. [c.421]

    Потенциал стеклянной мембраны Корнинг 015 [эвтектический состав 72,2% (мол.) SIO2 6,4% (мол.) СаО и 21,47о (мол.) NaaO] зависит и от активности ионов натрия, и от активности ионов водорода при pH выше 9. Уравнение (13-10) для такой стеклянной мембраны получает вид [c.268]

    На обеих границах стеклянной мембраны с растворами (внутренним, постоянным раствором, и внешним, исследуемым раствором) устанавливаются скачки потенциала, разность между которыми называется потенциалом стек.чянного электрода ф .  [c.114]

    Рассчитайте электрокинетический потенциал на границе водный раствор — пористая стеклянная мембрана по данным электроосмоса сила тока / = 3-10 А. за время 60 с переносится 0,6 i мл раствора, вязкость дисперсионной среды Т] = 10" Па-с, относительная диэлектрическая проницаемость среды е = 80,1. Электрическое сопротивление мембраны с дисперсионной средой R = 4500 Ом, а сопротивление мембраны, заполненной 0,1 М раствором K I, составляет = 52 Ом. Удельная электропроводность 0,1 М раствора КС1 равна xk i = 1,167 См-м .  [c.105]

    В кислых растворах ионы Na+ в стекле почти полностью вытесняются ионами Н+ и стеклянный электрод работает подобно водородному электроду. В щелочных растворах, наоборот, в стекле преобладают ионы Ма+, электрод действует как натриевый. Таким образом, на границе раздела стеклянная мембрана — исследуемый раствор возникает потенциал, величина которого зависит от концентрации водородных ионов (и, следовательно, pH) в растворе. Этот потенциал можно отнести к межфазовым потенциалам. Потенциал на стеклянной мембране электрода быстро устанавливается и не зависит от присутствия окислителей и восстановителей, солей и т. п. Однако в сильнощелочных и кислых растворах стеклянным электродом пользоваться нельзя, так как нарушается линейная зависимость между pH раствора и величиной потенциала. Свойства мембран у разных, даже однотипных, стеклянных электродов неодн- [c.69]

    Анионы раствора не влияют на величину потенциала, так как они не проникают внутрь стекла. Необходимо отметить еще одну особенность стеклянного электрода. Если по обе стороны тонкой стеклянной мембраны находятся растворы с одинаковой концентрацией Н3О+, то доннанов потенциал должен быть равен нулю. Однако практически всегда наблюдается некоторый скачок потенциала, который называется потенциалом асимметрии. Это объясняется различием свойств внутренней и внешней поверхностей стеклянного электрода. Поэтому при измерении pH растворов необходимо учитывать потенциал асимметрии или определять pH по калибровочной кривой. Для уменьшения потенциала асимметрии стеклянные электроды длительное время выдерживают в воде или в растворе 0,1-н. H I. [c.202]

    Возникновение потенциала асимметрии возможно при химических воздействиях на поверхность электрода (протравливание щелочами или плавиковой кислотой), механических повреждениях (стачивание, шлифование), адсорбции жиров, белков и других поверхностно-активных веществ. К наиболее важным причинам возникновения потенциала асимметрии относится изменение сорбционной способности стекла по отношению к воде при термической обработке в процессе изготовления электрода. Некоторый вклад вносит дегидратация набухшего поверхностного слоя (высушивание или выдерживание в дегидратирующем растворе). Возникновению потенциала асимметрии способствует неодинаковое напряжение на двух сторонах стеклянной мембраны. Если пустсЛ-ы кремнийкислородной решетки на одной ее поверхности отличаются по форме от пустот на другой поверхности, то нарушается равновесие переноса ионов между стеклом и раствором и возникает потенциал асимметрии. В общем, любое воздействие, способное изменить состав или ионообменные свойства мембраны, влияет на потенциал асимметрии стеклянного электрода и может привести к ошибкам в измерениях pH. Мешающее действие потенциала асимметрии компенсирзтот при настройке рН-метров по стандартным буферным растворам, имеющим постоянную и точно известную концентрацию ионов водорода. [c.188]

    Устройство стеклянного электрода понятно из рис. 61. Ионообменная мембрана изготовлена диаметром 8—10 мм,, толщиной 0,01 мм из стекла определенного сорта. Шарик припаян к корпусу 4, к трубке из обычного стекла и заполнен стандартным раствором 2 с постоянной активностью ионов водорода. В трубку опущен проводник 5 — контактный электрод из серебряной проволоки, который припаян к проводнику 5. Разность потеницалов между стеклянной мембраной и внутренним серебряным гальваническим полу-элементом 3 составляет потенциал стеклянного электрода. [c.273]


Смотреть страницы где упоминается термин Потенциал стеклянной мембраны: [c.269]    [c.29]    [c.317]    [c.155]    [c.337]    [c.72]    [c.89]   
Смотреть главы в:

Мембранные электроды -> Потенциал стеклянной мембраны




ПОИСК





Смотрите так же термины и статьи:

Мембрана стеклянная



© 2024 chem21.info Реклама на сайте