Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы химическая активность

    Существует определенная связь между химическим строением и свойствами поверхностно-активных веществ — эмульгаторов. Так, соли карбоновых кислот (растворимые в воде) со щелочными металлами, аммиаком или аминами обычно способствуют образованию эмульсий типа масло в воде, а их кальциевые, магниевые или алюминиевые соли — эмульсий типа вода в масле. Сложные эфиры жирных кислот с полиспиртами (гликолями) также способствуют образованию эмульсий типа вода в масле. [c.336]


    Химические свойства. Щелочные металлы весьма активны в химическом отношении. Восстановительная активность их быстро растет при переходе от лития к францию вместе с увеличением радиусов атомов и уменьшением энергии ионизации (см. табл. 22). [c.287]

    За щелочным металлом в каждом периоде следует элемент главной подгруппы II группы периодической системы. Это металлы бериллий, магний, кальций, стронций, барий и радий (табл. 18), Атомы всех этих элементов имеют на внешнем электронном слое два электрона, а не один, как щелочные металлы. В остальном каждый из них повторяет электронную структуру предыдущего щелочного металла. Они могут легко отдавать два валентных электрона, превращаясь в двухзарядные положительные ионы. По химической активности все элементы главной подгруппы II группы, за исключением бериллия, лишь немного уступают щелочным металлам. В ряду напряжений они стоят сразу же за щелочными металлами. Их активность возрастает с ростом радиусов атомов, от бериллия к барию и радию. Если бериллий и магний, покрываясь нерастворимой пленкой окис- [c.251]

    Щелочные расплавы. Для удаления прочных загрязнений (оксидов металлов, нагара, графитовой смазки, пригаров и др.) используют расплавы солей и щелочей. Очищаемые детали погружают в химически активные расплавы, нафетые до 200-450° С. Обработкой в расплавах от оксидов очищают поверхности никеля, титана, высокохромистых сталей. Для очистки деталей из черных металлов используют, например, при температуре 400 - 420 °С расплавы следующего состава 65 - 70% гидроксида нафия, 30 - 25% нчтрата натрия и 5% хлорида натрия. Расплав служит для удаления накипи, отложений ржавчины и нагара. Отложения нагара в расплаве полностью окисляются, а накипь в результате объемных и структурных изменений компонентов разрушается. Одновременно удаляются продукты коррозии и окалина, детали подвергаются пассивирующей обработке. Очистка поверхности в щелочном расплаве непродолжительна (2-5 мин), но энергоемка (4 - 5 10 кДж/м ). [c.34]

    Все элементы в свободном виде менее реакционноспособны по сравнению со щелочными металлами химическая активность увеличивается с ростом порядкового номера. Так, бериллий и магний устойчивы по отношению к воде, тогда как щелочноземельные металлы реагируют с ней, образуя соответствующие гидроксиды  [c.170]

    Щелочные металлы химически очень активны и бурно реагируют с водой, в результате чего образуются сильные основания. С солями щелочных металлов калия и натрия мы уже познакомились. [c.75]

    Опыт 4. Сравнение химической активности щелочных металлов. Кусочек натрия пинцетом бросьте в кристаллизатор с водой, к которой добавлен фенолфталеин. Накройте кристаллизатор стеклом. Наблюдайте течение опыта. Аналогичный опыт проведите с литием и калием. Сопоставьте химическую активность по отношению к воде щелочных металлов. [c.106]


    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]

    Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице 18 стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов. [c.81]

    Соединения меди, в которых этот элемент проявляет степень окисления 4-2, вполне устойчивы, и поэтому единственным основанием для помещения меди в I группу служит наличие у нее одного внешнего -электрона. Эффект экранирования этого электрона заполненной -оболочкой сравнительно слаб, и электрон прочно удерживается ядром. Соответственно и ионизационный потенциал меди довольно велик (7,37 В, что значительно больше, чем у щелочных металлов). Отсюда же вытекает и склонность меди к образованию ковалентных соединений и ее меньшая, чем у щелочных металлов, химическая активность второй потенциал ионизации меди, наоборот, меньше, чем у щелочных металлов. Поэтому медь (II) легко образует многочисленные комплексные соединения. Большей устойчивости степени окисления (II) способ- [c.203]

    Простые вещества скандия н его аналогов по химической активности уступают лишь щелочным и щелочноземельным металлам. В ряду 5с—V—Ьа—Ас химическая активность заметно возрастает, [c.526]

    Свойства (табл. 24). Несколько более тяжелые и твердые, плавящиеся при более высокой температуре и менее реакционноспособные металлы по сравнению со щелочными металлами. Химическая активность увеличивается с повышением порядкового номера. Так, бериллий и магний устойчивы по отношению к воде, а щелочноземельные металлы реагируют с ней  [c.285]

    Одинаковая структура наружных электронных слоев у атомов элементов подгруппы бериллия обусловливает ряд их общих свойств. Все они в свободном состоянии серебристо-белые металлы, более твердые, чем щелочные металлы. Химически довольно активны. На воздухе окисляются, образуя окислы основного характера состава КО. Взаимодействуя с водой, образуют основания состава К(ОН)а, например Mg(0H)2, Са(ОН)а и т. д., менее растворимые в воде, чем гидроокиси щелочных металлов. Растворимость гидроокисей возрастает в подгруппе от бериллия к радию. В такой же последовательности изменяются основной характер и химическая активность гидроокись бериллия амфотерна, гидроокись бария—сильное основание. [c.356]


    Щелочные металлы принадлежат к числу наиболее активных в химическом отношении элементов. Их высокая химическая активность обусловлена в первую очередь низкими значениями энергии ионизации их атомов — легкостью отдачи ими валентных электронов. При этом энергия ионизации уменьшается при переходе от лития к цезию (табл. 30). Ясно, что химическая активность прн этом возрастает. [c.563]

    Одним из важнейших свойств щелочных металлов, на котором основано их применение в электровакуумной технике, является высокая светочувствительность при малом значении работы выхода (цезий обладает даже чувствительностью к инфракрасным лучам). Все эти металлы химически активны. При соединении с кислородом реакция идет бурно, со взрывами. При воспламенении этих металлов не следует тушить их углекислотой, так как окись углерода и углекислота также активно вступают в реакцию. Работая со щелочными металлами, необходимо соблюдать специальные меры техники безопасности хранить их под инертными растворителями (керосин), применять защитные очки, производить работу в сухом помещении. [c.274]

    Химический способ очистки поверхности нагрева состоит в обработке осадков кислотами (соляной, хромовой) или другими активными растворами. В зависимости от химического состава накипи используется содово-щелочной, фосфатный, кислотный и содово-кислотные растворы [46]. Наиболее распространенный кислотный способ удаления накипи заключается в том, что покрытая накипью поверхность обрабатывается слабым раствором соляной кислоты. Однако даже при добавлении в раствор кислоты ингибиторов — замедлителей коррозии (уротропина, формалина и др.) имеется опасность поражения металла химически активными реагентами. [c.233]

    У каждого атома щелочных металлов электроны распределяются таким образом, что внешнюю оболочку занимает только один электрон. Поскольку при столкновении атомов в контакт вступают именно внешние электронные оболочки, то следует ожидать, что число электронов на внешней оболочке и определяет химическую активность элемента. Элементы с аналогичными внешними электронными оболочками имеют сходные свойства, как, например, вышеупомянутые щелочные металлы. [c.158]

    При других партнерах по реакции и условиях ее протекания ряд изменения химической активности простых веществ может быть иным. Так, из щелочных металлов по отношению к фтору (а также кислороду) наиболее активен литий  [c.237]

    Случаи воспламенения химических продуктов (органических красителей и полупродуктов) происходили при ведении процесса сушки вследствие неправильного выбора теплоносителя. Поэтому при сушке продуктов, имеющих низкую температуру воспламенения, важнейшим условием является правильный выбор теплоносителя, температура которого не должна превышать опасных пределов. Форма, размеры и материал оборудования должны быть такими, чтобы на их стенки не налипали органические продукты, так как это может привести к локальным перегревам и воспламенению. Горючие вещества могут воспламениться при воздействии на них концентрированных азотной и серной кислот активные щелочные металлы (натрий и калий) могут воспламениться при воздействии на них воды. Такие металлы нужно хранить в герметичной таре. [c.338]

    Химическая активность. Из учения о строении вещества известно, что активность металлов с увеличением номера группы падает, а активность неметаллов возрастает, т. е. наиболее реакционноспособными являются щелочные металлы, а из неметаллов — галогены. При этом если для первых химическое сродство в подгруппе растет, то для последних оно уменьшается. [c.259]

    Щелочные металлы (К и Na ) являются нежелательными компонентами в активном оксиде алюминия. Содержание их регламентировано вследствие специфических особенностей каталитического процесса получения серы. Примеси изменяют свойства и влияют на фазовый состав активного оксида алюминия. Увеличение степени химической чистоты продукта улучшает качество катализатора. [c.105]

    При необходимости измерить излучение газа источник в верхней части рисунка не включается, верхний прерыватель также выключен и открыт, а нижний работает. Тогда для изотермического газа преобразованный сигнал соответствует (1—е < )/ , (Г , v). Для предохранения окон ячейки (которые также изготовляют из кристаллов солей галогенидов щелочных металлов) от воздействия высоких температур и химически активных газов используют изотермическую диагностическую ячейку, изображенную на рисунке. Исследуемый газ удерживается тяжелым прозрачным инертным газом, который в свою очередь отжимается легким прозрачным инертным газом (гелием). [c.486]

    В химическом отношении элементы главной подгруппы I группы схожи. Все они активны, причем с увеличением атомного номера химическая активность металлов усиливается. При взаимодействии с неметаллами щелочные металлы образуют соединения с ионной связью. [c.143]

    Почему кальций в ряду напряжений стоит впереди натрия, хотя щелочноземельные металлы химически менее активны, чем рядом стоящие в периоде щелочные металлы  [c.75]

    Простые вещества скандия и его аналогов по химической активности уступают лишь щелочным и щелочноземельным металлам. В ряду 5с—У—Ьа—Ас химическая активность заметно возрастает. При более или менее сильном нагревании все они реагируют с большинством неметаллов, а при сплавлении — с металлами. [c.546]

    По химической активности лантаноиды, как и Ьа, уступают лишь щелочным и щелочноземельным металлам. Компактные металлы, правда, довольно устойчивы к сухому воздуху. Во влажном же воздухе они быстро тускнеют. При нагревании до 200—400°С лантаноиды воспламеняются на воздухе и сгорают с образованием смеси оксидов и нитридов. Церий в порошкообразном состоянии даже пирофорен, т. е. самовоспламеняется на воздухе при обычных условиях. Пирофор-ность церия и ряда других лантаноидов используется для получения пирофорных сплавов — кремней зажигалок, трассирующих пуль и др. [c.551]

    Силициды щелочных металлов химически активны, они быстро разлагаются водой, выделяя водород, моносилан 5 Н4 и дисилан 312Нб. Силициды щелочноземельных металлов менее активны, раз- [c.292]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]

    ЩЕЛОЧНЫЕ МЕТАЛЛЫ — химические элементы главной подгруппы I группы периодической системы элементов Д. И. Менделеева 11, Ыа, К1 Р1), Сз и радиоактианый элемент Рг. Гидроксиды Щ. м.— сильные основания (щелочи). Щ. м.— химически активные элементы — активность их возрастает от кРг. [c.288]

    Простые соли — соединения типичных металлических элементов с окислительными элементами (оксоидами). Связь между атомами в молекулах простых солей, находящихся в газовом состоянии, преимущественно ионная, по крайней мере для типичных случаев (т. е. для соединений наиболее активных, например щелочных, металлов с активными оксоидами, например галогенами). Простые соли характеризуются кристаллическими решетками ионного типа, а в жидком состоянии — ионной электропроводностью. Несомненно, что к классу простых солей должны быть отнесены оксиды и нитриды активных металлов, поскольку они характеризуются теми же типичными для солей признаками гидриды наиболее активных (например, щелочных) металлов также являются простыми солями, обладая всеми их признаками. Характерной химической функцией простых солей является их способность бьта донорами положительно и отрицательно заряженных элементарных ионов, сочетаниями которых они являются. [c.51]

    В периодической системе они образуют главную подгруппу I группы химических элементов. В атомах щелочных металлов содержится по одному внешнему, или валентному, электрону. Отдавая валентный электрон, их атомы обращаются в однократно положительно заряженные ионы. Во всех своих соединениях щелочные металлы одновалентны и образуют только ионные связи. Из металлов щелочные металлы — самые активные ими начинается электрохимический ряд напряжений. Гидроокиси щелочных металлов, в том числе известные вам NaOH — едкий натр, или каустическая (в переводе жгучая ) сода, и едкое кали КОН, опасны в обращении. Они разъедают кожу и ткани, поэтому называются едкими щелочами. Подобно гидроокисям, растворимы в воде н все соли ще.1ючных металлов, с которыми приходится нам встречаться все эти соли относятся к сильным электролитам. [c.128]

    Щелочные металлы химически очень активны. Поэтому они в чистом виде не встречаются в природе. С водородом они образуют гидриды состава Lin, NaH, КН, RbH, sH—твердые вещества, легко ра,злагаемые водой. Водород в них отрицательно одновалентен (см. рис. 121). Среди других металлов щелочные металлы являются самыми сильными восстановителями. [c.348]

    ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — химич. элементы кальций Са, стронций 8г, барий Ва и радий Ка, относящиеся к главной подгруппе II гр. иерио-днч. системы Менделеева. Происхождение названия связано с тем, что окислы этих металлов (по терминологии алхимиков — земли ) сообщают воде щелочную )еакцию. Внешняя электронная оболочка атомов Ц. м. содержит 2 -электрона, ей предшествует законченная оболочка из 8 р-электронов. Щ. м.— типичные электроположительные элементы, приближающиеся ио химич. свойствам к щелочным металлам. Химически Щ. м. очень активны, их активность возрастает от кальция к радию. [c.455]

    Получило дальнейшее развитие предположение о высокой активности в реакции дегидроциклизации комплексных активных центров, содержащих ионы Pt +, химически связанные с поверхностью носителя — AI2O3 [188]. Так, в работах Н. Р. Бурсиан с сотр. [189—192] исследована структура активных центров алюмоплатиновых катализаторов в реакции Сб-дегидроциклизации н-гексана. На основании изучения с помощью экстракционного метода промотирующего действия щелочных металлов (Li, Na, s) на Pt-контакты, а также исходя из полученных данных об отсутствии связи между кислотными и ароматизирующими свойствами изучаемых катализаторов, предложена модель комплексного активного центра, содержащего ион Pt +. [c.256]

    Это, в первую очередь, химический состав катализатора. Содержание активных компонентов и промоторов должно обеспечивать высокие показатели процесса при минимальных расходах драгоценных металлов и дефицитных веществ, которые используются при приготовлении катализаторов ри рминга. Присутствие нежелательных примесей (щелочных металлов, железа, некоторых анионов) в катализаторе приводит к ухудшению его качества, поэтому их содержание должно быть ограничено необходимыми пределами. [c.159]

    ЭПХГ обладает высокой химической активностью, при его гидролизе идут побочные реакции. Например, ЭПХГ может легко полимеризоваться, чему способствуют повышение температуры и контакт с некоторыми металлами, особенно с железом. В зависимости от применяемого катализатора получаются подвижные жидкости, высоковязкие масла или смолообразные продукты. Поэтому аппаратуру и трубопроводы для ЭПХГ рекомендуют делать из хромоникелевых сталей [167, 168]. Описан ионный механизм полимеризации эпоксидной группы под действием кислотных или щелочных катализаторов с образованием соединений типа полимерных простых эфиров [169]. В случае присутствия кислотного катализатора реакция протекает следующим образом  [c.41]

    Другой способ получения активного углерода из каменных углей заключается в модифицировании каменного угля щелочными металлами, что обеспечивает способность угля к поглощению веществ большей молекулярной массы, а также высокую скорость процессов адсорбции-десорбции. Традиционные методы получения адсорбет-ов из ископаемых углей приводят обычно к продукту с широким распределением пор по размерам, в связи с чем углеродные сорбенты из углей имеют низкую селективность и относительно невысокую удельную поверхность и, как следствие, ограниченные возможности для практического использования. Было установлено, что свойства угля во многом определяются кислородсодержащими группами. В каменном угле, кроме кислородсодержащих, существенную роль играют ароматические и гидроароматические фрагменты. Исходя из этого, модифицирующие обработки были направлены на карбоксильные, карбоксилатные, гидроксильные и другие кислородсодержащие группы, а также на ароматические структуры. Химическое модифицировании каменных углей приводит к получению адсорбентов, сорбирующих метиленовый голубой до 150-170 мг/г, йод до 130%. Полученные результаты явились предпосылкой изучений свойств углей с целью получения из них углеродного материала с высокой удельной поверхностью. [c.51]


Смотреть страницы где упоминается термин Щелочные металлы химическая активность: [c.152]    [c.39]    [c.486]    [c.607]    [c.97]    [c.129]    [c.312]    [c.246]   
Неорганическая химия (1981) -- [ c.409 ]

Неорганическая химия (1981) -- [ c.409 ]




ПОИСК





Смотрите так же термины и статьи:

Водород и гелий как прототипы химически активных и химически инертных элементов и как кайносимметричные типические представители гомологичных им по группе щелочных и щелочноземельных металлов

Металлы химические

Ряд активности металлов



© 2025 chem21.info Реклама на сайте