Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитохром перенос электронов

    Исследователи уделяют большое внимание тому, как сопрягается синтез АТФ с фотосинтетическим переносом электронов, т. е. какими путями запасается в аденозинтрифосфате известная часть энергии, поглощаемой при действии света на хлорофилл. Синтез АТФ, как видно на рис. 189, происходит при переносе электронов от цитохрома типа Ь к цитохрому типа с, а также при обратном переходе от FRS к ФС1. [c.347]


    Последовательность PQ— цитохром 6559 цитохром /, по-видимому, весьма близка к последовательности переносчиков в митохондриях [106] убихинон цитохром цитохром С , которая содержит участок сопряжения II с синтезом АТР (рис. 10-11). Как указано на рис. 13-18, с синтезом АТР, по-видимому, сопряжен н соответствующий участок цепи переноса электронов в хлоропластах. [c.49]

    Определена также структура солюбилизированного цитохрома Ьв из микросом печени. Хотя точная функция его неизвестна, можно думать, что он играет роль, подобную роли цитохрома с, взаимодействуя с ферментативной системой эндоплазматического ретикулума, катализирующей образование ненасыщенных жирных кислот. Белок содержит 93 аминокислотных остатка, а еще 44 (преимущественно гидрофобных) отщепляются с Ы-конца в процессе солюбилизации белка. Вероятно эта Ы-концевая часть служит гидрофобным якорем, погружаемым в мембрану эндоплазматического ретикулума. Гем в цитохроме Ьв не связан ковалентно с белком, но прочно удерживается между двумя боковыми цепями гистидинов. По способу свертывания цепи этот белок совершенно не похож ни на цитохром с, ни на миоглобин. И в этом случае не видно путей переноса электрона от атома железа на поверхность молекулы [23]. [c.375]

Рис. 36. Схема переноса электронов в дыхательной цепи митохондрий SDH - сукцинатдегидрогеназа, yt - цитохром, fp - флавопротеид Рис. 36. <a href="/info/970746">Схема переноса электронов</a> в <a href="/info/278075">дыхательной цепи митохондрий</a> SDH - сукцинатдегидрогеназа, yt - цитохром, fp - флавопротеид
    Метод ДМВ весьма эффективен и в исследованиях другого гемсодержащего белка — цитохрома с. Цитохром с участвует в переносе электрона в цепи окислительно-восстановительного фосфорилирования и атом Ре гема окисляется и восстанавливается (см. стр. 98). Очевидно, что причины различного [c.449]

    Электроны поступают на цитохром и через цитохром с на терминальную оксидазу аа , где акцептируются молекулярным кислородом (рис. 98, Б). При этом происходит перенос через мембрану 2Н" . Поток электронов от N62 на О2 происходит с участием очень короткого отрезка дыхательной цепи. Так как пары N02/N0з равен -1-420 мВ, восстановитель образуется в процессе энергозависимого обратного переноса электронов. Большая нагрузка на конечный участок дыхательной цепи объясняет высокое содержание цитохромов с и я у нитрифицирующих бактерий. [c.382]


    Гемопротеидом является и цитохром с, образованный небольшим белком, ковалентно связанным с гемом. Цитохром с осуществляет перенос электронов на кислород в важнейшем процессе окисления органических соединений, присущий [c.16]

    Дыхательная цепь включает три белковых комплекса комплексы I, III и IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные мо леку лы-переносчика - убихинон (кофермент Q) и цитохром с. Сукцинатдегидрогеназа, принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза иногда называется комплексом V, хотя она не принимает участия в переносе электронов (см. рис. 7.12). [c.174]

    Цитохром с переносит электроны к комплексу IV, цитохром с-ок-сидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра (Снд и Спв) и гемы а и а , через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образуется сильный основной анион О2, который связывает два протона и переходит в воду. Поток электронов сопряжен с образованным комплексами I, III и IV протонным градиентом. [c.174]

    Теперь мы знаем, что цитохромы в дыхательной цепи расположены в последовательности Ь -> l с -> ааз (рис. 17-1 и 17-7). Цитохром Ъ, присутствующий в двух формах, принимает электроны от убихинона и передает их цитохрому с , который в свою очередь передает их цитохрому с. Каждый из этих цитохромов, находясь в окисной [Fe(III)] форме, присоединяет один электрон и переходит в закисную [Fe(II)] форму. В переносе электронов от убихинона на цитохром с принимает участие также белок, содержащий железо и серу (рис. 17-5). Последним в ряду переносчиков электронов стоит цитохром a 3, называемый также цитохромоксидазой, поскольку он переносит электроны прямо на кислород и тем самым завершает процесс переноса. [c.521]

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.
    Цитохромы Ь, с и а — переносчики электронов. В окисленной форме они отнимают электрон у атома водорода, содержащегося в дегидроформе флавнновой дегидрогеназы, в результате чего образуется ион водорода, а цитохром превращается в восстановленную форму. Способность цитохромов к переносу электронов обусловлена присутствие.м в них железа, которое может обратимо изменять свою валентность (Ре +-Ье Ре +). Цитохромы последовательно передают электрон от одного к другому, и последний из них окисляется цитохромоксидазой. Она передает электрон цитохрома непосредственно молекулярному кислороду, который ионизируется и реагирует с поном водорода, образуя воду (2Н+-Ь0 = = Н,0). [c.117]

    Перенос электронов по дыхательной цепи митохондрий завершает цитохромоксидаза (цитохром сЮг-оксидоредуктаза, комплекс IV), катализирующая реакцию восстановления молекулярного кислорода до воды. Донором электронов для фермента служит ферроцитохром с. Реакция специфически блокируется цианид- и азид-ионами, а также окисью углерода. Цитохромоксидаза прочно связана с внутренней мембраной митохондрий и является интегральным мембранным белком в раствор фермент может быть высвобожден лишь после растворения мембраны высокими концентрациями детергентов. В нативной мембране, а также в растворах неионных детергентов (тритон Х-100, твин-80, Emasol-1130) цитохромоксидаза присутствует в виде высокоактивного димера. Некоторые воздействия (рН>8,5, высокие концентрации солей и неионных детергентов) вызывают появление мономерных форм фермента. Каталитическая активность цитохромоксидазы зависит от степени агрегации молекулы фермента. [c.432]

    Соед., подавляющие Д. (дыхат. яды), выключают энерго обеспечение организма и потому являются быстродействую щими ядами. Классич. дыхат. яды (цианиды, изоцианиды сульфиды, азиды, СО и NO) угнетают концевой фермент дыхат. цепи митохондрий цитохром-с-оксидазу). Эти же соед. угнетают транспорт Oj по организму, связываясь с гемоглобином. Др. важный класс дыхат. ядов - гидрофобные орг. в-ва, часто хиноидной природы, выступающие как антагонисты убихинона (замещенного 1,4-бензохинона), играющего ключевую роль во мн. стадиях переноса электронов по дыхат. цепи. Сильнейшие яды этого класса-токсич. антибиотики (ротенон, пирицидин, антимицин, миксотиа-зол), 2-гептил-4-гидроксихинолин-К-оксид их используют в исследованиях тканевого Д. Способность к умеренному подавлению убихинон-зависимых р-ций в дыхат. цепи свойственна мн. лек. ср-вам (напр., барбитуратам), фунгицидам и пестицидам. [c.125]


    Эту цепь можно разделить на два участка-т. наз. диафо-разный, содержащий ФАД и катализирующий перенос электронов к цитохрому с, и терминальный, содержащий атом Мо, способный принимать электроны от восстановленного ферредоксина. Диафоразный участок ингибируется реагентами, взаимодействующими с сульфгидрильными группами, и при нагревании. Терминальный участок устойчив к нагреванию, ингибируется металлсвязывающими ингибиторами, напр. N" активность этого участка зависит от окислит.-восстановит. св-в среды. [c.256]

    В биохимии Р. известен как специфич. ингибитор тканевого дыхания, бJюкиpyющий перенос электронов от восстановленной формы никотинамидадениндинуклеотида (НАДН) к цитохрому Ь, на чем основано его инсектицидное действие. [c.275]

    Такою же типа ячейки можно использовать для измерения спектральных характеристик веществ, у которых гетерогенный перенос электрона протекает настолько медленно, что прямое превращение на электроде затруднительно или невозможно. В таких случаях используют переносчик электрона, способный ЕС быстрому обме(1у электронами как с электродом, так и с исследуемым субстратом, т е. проводят непрямой электролиз. Зтот метод использовали при определении формальных потенциалов н чисст электронов при восстановлении цитохрома с и цитохром с—оксидазы [174] Изменения в спектрах, наблю-дави1иеся после последовательною кулонометрического генерирования всего Б-10- экв ( ) переносчика электронов, в данном случае катион-радикала 1,Г-диметил-4,4 -бнпирпдилия, представлены на рис 3 36 Другие примеры одновременного определения числа электронов п методами кулонометрин и спектроскопии содержатся в обзоре [162]. [c.141]

    При функционировании цитохром P-450-гидроксилаз происходит перенос электронов от NADH или NADPH, через флавопротеид и далее на ферредоксин (Fd) или рубредоксин. По-видимому, один из этих последних белков, содержащих негемовое железо, затем восстанавливает железо, входящее в комплекс субстрата с цитохромом Р-450, иэ [c.444]

    Fe(III)-состояния в Fe(II)-состояние [уравнение (10-60), реакция а]. Далее к иону двухвалентного железа присоединяется кислород, окисляющий его в феррисостояние. В этот момент из цепи переноса электронов поступает еще один электрон. Координационно связанный кислород О 2 или Ог атакует субстрат, и цитохром Р-450 освобождается в Ре(1П)-состоянии. Хотя подробности этого процесса неизвестны, во всех случаях должна функционировать какая-то весьма сходная цепь реакций. [c.445]

    Цитохромы типа с возникли в результате дифференциации белков. Как показано в разд. 9.2, митохондриальные цитохромы с образуют хорошо изученную группу специализированных белков. Другие цитохромы с-типа выполняют различные функции, большая часть которых, однако, состоит в присоединении и переносе электронов [509]. Все цитохромы с можно рассматривать как типичный случай дифференциации белков, однако поскольку сам термин цитохром с возник в результате спектральной, а не структурной классификации, какие-либо обобш ения в настояш ее время вряд ли возможны. Помимо митохондриального цитохрома с рентгеноструктурный анализ завершен для трех бактериальных цитохромов (табл. 9.7) и начат для еще трех прокариотных цитохромов, а именно сс , Сщ и с [509]. [c.225]

    Гемсодержащие белки являются переносчиками электронов или малых молекул, таких, как О2. В гемоглобинах функция гема и окружающей его полипептидной цепи состоит в обеспечении связывания молекулярного кислорода железом и в защите координированного ферроиона от окисления [639]. В цитохроме с функция атома железа в геме заключается не в координации малой молекулы, а в переносе электронов в ходе метаболизма энергии железо ферментативно восстанавливается (Fe —>- Fe " ) и окисляется соответствующими белками — партнерами цитохрома с [509]. Цитохром 65 — составная часть другой группы электронпереносящих белков, которые участвуют в расщеплении жирных кислот и других химических реакциях [297]. Было выдвинуто предположение [640], что цитохром 5 может взаимодействовать in vivo с цитохромом с. Однако пока установлено, что восстановление цитохрома с цитохромом bs может происходить только in vitro. Недавно была предложена структурная модель этого взаимодействия [640]. [c.249]

    Поразительные изменения свойств могут проистекать в результате замены всего лишь одной аминокислоты на другую в молекуле белка. Так, замена остатка глутаминовой кислоты на валин в одной из четырех полипептидных цепей гемоглобина резко изменяет его свойства и приводит к болезни — серповидной анемии. Изменение других аминокислотных остатков может, однако, давать незначительный эффект или вовсе не влиять на биологическую активность. Интересный пример такого рода эффектов можно наблюдать среди различных молекул цитохрома с, выделенных из организмов, которые находятся на очень различных стадиях эволюционного статуса [12]. Цитохромы действуют при биологическом окислении как переносчики электронов и один из них, цитохром с, может быть легко растворен и выделен. Полная аминокислотная последовательность цитохрома с была определена для белков из примерно 40 видов проведено сопоставление между различными последовательностями, а также с трехмерной (по данным рентгенографии) моделью цитохрома с сердца лошади. По-видимому, цитохром с не подвержен радикальным эволюционным изменениям, однако отдельные участки (особенно положения 70— 80 в последовательности из 104 аминокислот) совершенно неизменны, тогда как другие допускают изменения в довольно широких пределах. Важно, что участок аминокислотной последовательности, ответственный за перенос электронов, содержит шесть или более остатков различных аминокислот в различных видах. [c.223]

    Цитохром l (из митохондрии) — гемопротеид с молекулярной массой 40 ООО— содержит четыре геминовые группы на моль ферл1ента. Цитохром с растворим в воде, имеет молекулярную массу 13 ООО. Цитохром а входит в состав цитохромоксидазы, катализирующей завершающую фазу реакции переноса электронов от восстановленного цитохрома с (окисляя его железо в Fe ) на молекулярный кислород, используя при этом протон воды и образуя воду. Цитохром а представляет собой железоцитопорфирин. Цитохромоксидаза содержит два атома меди на моль фермента молекулярная масса 70 ООО. [c.560]

    Общая картина такова, что при переносе электронов от донора на акцептор фотосистемой I образуется сильный восстановитель, который может восстанавливать NADP+ до NADPH, и слабый окислитель, который тем не менее способен получать электроны от пластоцианина. Вместе с тем перенос электронов с донора на акцептор фотосистемой II приводит к образованию сильного окислителя (окисленный донор), который может осуществлять окисление воды и выделение кислорода. Образующийся при этом восстановитель (восстановленный акцептор), хотя и более слабый, чем в фотосистеме I, достаточно силен для передачи электронов через последовательность компонентов пластохинон — цитохром / — пластоцианин. [c.344]

    Обнаружены ингибиторы, специфически действующие на определенные участки дыхательной цепи. Амитал и ротенон блокируют перенос электронов на участке до цитохрома Ь, действуя предположительно на НАД(Ф) Н2-дегидрогеназу. Антимицин А (антибиотик, продуцируемый Streptomy es) подавляет перенос электронов от цитохрома Ь к цитохрому с,. Цианид, окись углерода и азид блокируют конечный этап переноса электронов от цитохромов а + Дз на молекулярный кислород, ингибируя цитохромоксидазу. Если блокировать перенос электронов в электронтран-спортной цепи определенными ингибиторами, то переносчики, находящиеся на участке от субстрата до места действия ингибитора, будут в восстановленной, а переносчики за местом действия ингибитора — в окисленной форме. [c.364]

    Затем с рустицианина они передаются на цитохром с, локализованный на внешней стороне ЦПМ, а с него на цитохром а,, расположенный на внутренней стороне мембраны. Перенос электронов с цитохрома на сопровождающийся поглощением из цитоплазмы 2Н , приводит к восстановлению молекулярного кислорода до Н2О. Особенность дыхательной цепи Т. ferrooxidans — отсутствие переноса через мембрану протонов, а перенос только электронов. Градиент Н+ по обе стороны ЦПМ поддерживается как за счет поглощения протонов из цитоплазмы, так и в результате низкого pH внешней среды, в которой [c.379]

    Ряд ионов металлов, в основном четвертого периода периодической системы элементов играет важную роль в качестве кофакторов белков при выполнении ими каталитических и некоторых других функций. Среди них приоритетное место занимает железо. В 1.1 уже говорилось о железопорф1 ринах, которые, связываясь с белками, образуют гелопротег1< ы — комплексы, выполняющие ряд жизненно важных функций. Среди них имеются и ферменты, например уже упоминавшаяся каталаза, и переносчики кислорода (гемоглобин), и переносчики электронов. К числу последних относится цгстохром с — гемопротеид, образованный небольшим белком, который двумя остатками цистеина связан ковалентно с гемом по его винильным радикалам. Цитохром с является участником одного из важнейших процессов в биосфере, свойственного всем аэробным организмам, — переноса электронов от NAD-И к О2. [c.65]

    Микросомальные ферментные системы. Реакции микросомального окисления катализируются НАДФН- и НАДН-зависимыми ферментными системами в присутствии кислорода. НАДФН-зависимый флавопротеин переносит электрон от восстановленного НАДФН на терминальный фермент — цитохром Р-450, восстанавливая железо гема последнего. Кроме того, в монооксигеназных реакциях принимает участие НАДН-зависимый ферментный комплекс, состоящий из НАДН-зависимого флавопротеина и цитохрома Ь . В этом случае электрон переносится на кислород и активирует его  [c.511]

    Ферменты переноса электронов и окислительного фосфорилирова-ния, находящиеся у эукариот в митохондриях, у бактерий локализуются внутри или на поверхности плазматической мембраны. Цитохромы, железосерные белки и другие компоненты электрон-транспортной цепи находятся исключительно в мембранах. Как показало детальное изучение локализации отдельных компонентов, мембрана построена асимметрично например, цитохром с расположен в ее наружном слое, а АТР-синтетаза — на внутренней стороне мембраны [64]. [c.24]

    В цитохромах с и С дополнительные ковалентные связи формируются между тиогруппами цистеина и боковыми винилъными группами гема. ОНг-дегидрогеназа (комплекс III) представляет собой комплекс цитохромов Ь и j. Этот фермент катализирует окисление восстановленного кофермента Q и перенос электронов на цитохром с. Электроны последовательно переносятся атомами железа цитохромов Ь и j, а затем поступают на цитохром с. Протоны после окисления QH2 освобождаются в раствор. [c.173]

    Последний переносит электроны в комплекс III, который поставляет их через два гема Ъ, один FeS-цвнтр и гем С на небольшой гем-содержащий белок цитохром с. [c.174]

    На модельной системе [530] был исследован процесс получения водорода из воды с использованием природных и синтетических катализаторов и солнечной радиации в качестве источника энергии. Солнечный свет поглощается мембраной из хлоропласта в качестве катализатора процесс переноса электронов использовали ферредоксин, флаводоксин, цитохром, красители на основе виологена, синтетические кластеры, содержащие Ре — Мо — 5-центры, а в качестве активатора протонов — гидрогеиазу или РЮг. Основная модельная система состояла из мембраны — буферной суспензии изолированного хлоропласта, энзима гидрогеназы и носителя электронов. При освещении такой системы выделяется водород. Скорость и продолжительность выделения водорода зависит от природы хлоропласта и гидрогеназы, содержания кислорода в системе, природы переносчика электронов [530]. [c.345]

    От всех NAD-зависимых реакций дегидрирования восстановительные эквиваленты переходят к митохондриальной NADH-дегидрогеназе, содержащей в качестве простетической группы FMN. Затем через ряд железо-серных центров они передаются на убихинон, который передает электроны цитохрому Ъ. Далее электроны переходят последовательно на цитохромы j и с, а затем на цитохром аа , (цитохромоксидазу), которая содержит медь. Цитохромоксидаза передает электроны на О2. Для того чтобы полностью восстановить Oj с образованием двух молекул HjO, требуются четыре электрона и четыре иона Н. Перенос электронов блокируется в определенных точках ротеноном, антимицином А и цианидом. Процесс переноса электронов сопровождается значительным снижением свободной энергии. В трех участках дыхательной цепи происходит запасание энергии в результате синтеза АТР из ADP и Р . Окислительное фосфорилирование и перенос электронов можно разобщить, воспользовавшись для этого разобщающими агентами или ионофорами, такими, как валиномицин. Для того чтобы могло происходить окислительное фосфорилирование, внутренняя митохондриальная мембрана должна сохранять свою целостность и должна быть непроницаемой для ионов Н и некоторых других ионов. Перенос электронов сопровождается выталкиванием ионов Н из митохондрий. Согласно хемиосмотической гипотезе (одной из трех гипотез, предложенных для объяснения механизма окислительного фосфорилирования), перенос электронов создает между двумя сторонами внутренней митохондриальной мембраны градиент концентрации ионов Н , при котором их концентрация снаружи выше, чем внутри. Предполагается, что именно этот градиент служит движущей силой синтеза АТР, когда ионы Н, возвращающиеся из цитозоля в матрикс, проходят через [c.545]

    Вода, диссоциируя но схеме НгО- -Н -Ь ОН , служит, с одной стороны, донатором водорода для образования НАДФ Нг, а с другой — источником электронов для хлорофилла. Предполагается, что ОН отдает свой электрон, который переносится через цепь переноса электронов на цитохром и в конечном счете на хлорофилл. При таком переносе освобождается энергия, необходимая для образования макроэргической фосфатной связи. ОН после отдачи электрона служит источником для образования кислорода. В связи с тем, что электрон, освобожденный хлорофиллом, используется для синтеза НАДФ Нг, а хлорофилл присоединяет другой электрон, этот процесс получил название нециклического фотофосфорилирования. Схема этого процесса представлена на рисунке 15. [c.137]

    Стадии переноса электрона, в которых участвуют цитохро-мы, связаны с изменением степени окисления центрального катиона металла (Fe +/Fe - , Си +/Си+), а стадии, включающие убихинон, связаны с взаимопревращением хиноновой и диокси- [c.292]


Смотреть страницы где упоминается термин Цитохром перенос электронов: [c.50]    [c.135]    [c.570]    [c.431]    [c.227]    [c.227]    [c.230]    [c.199]    [c.400]    [c.150]    [c.295]    [c.521]    [c.522]    [c.523]   
Основы биологической химии (1970) -- [ c.234 , c.327 , c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Цитохром



© 2025 chem21.info Реклама на сайте