Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция процесса развития

    В отличие от ацетилхолина, катехоламины проявляют большую активность в регуляции процессов развития и морфогенеза. Правда, в одних случаях они подавляют, а в других стимулируют цветение одного и того же растения. [c.27]

    РЕГУЛЯЦИЯ ПРОЦЕССА РАЗВИТИЯ [c.276]

    Трансляционная и посттрансляционная регуляция процессов развития [c.199]

    Регуляция экспрессии генов эукариот лежит в основе програ.ммы развития многоклеточных организмов. В начале XX в. благодаря работам Т. Моргана и Э. Вильсона стало очевидным, что развитие программируется генами. Поэтому один из подходов к пониманию закономерностей высокоупорядоченного процесса развития состоит в выявлении генов, контролирующих ключевые стадии развития. [c.212]


    Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Следует добавить, что блокирование одного какого-либо специфического пути обмена даже одной аминокислоты, обычно наблюдаемое при врожденных пороках обмена, может привести к образованию совершенно неизвестных продуктов обмена, так как возникают условия для неспецифических превращений всех предшествующих компонентов в данной цепи реакций. Отсюда становятся понятными трудности интерпретации данных о регуляции процессов азотистого обмена в норме и особенно при патологии. Этими обстоятельствами можно объяснить исключительную перспективность изучения обмена белков с целью выяснения особенностей их катаболизма и синтеза, овладение тонкими молекулярными механизмами которых, несомненно, даст в руки исследователя ключ к пониманию развития и течения патологических процессов и соответственно к целенаправленному воздействию на многие процессы жизни. [c.410]

    В этой брошюре затронуты примерно те же вопросы, что и в предыдущей. Кроме того, содержится краткий исторический очерк развития биологической химии и рассматриваются три основные ее проблемы структуры веществ, энергетического обеспечения жизни и регуляции процесса обмена веществ. [c.34]

    РАСТЕНИЙ, БОРЬБЫ С ВРЕДИТЕЛЯМИ И БИОЛОГИЧЕСКОЙ РЕГУЛЯЦИИ ПРОЦЕССОВ РОСТА И РАЗВИТИЯ [c.191]

    Ферментная регуляция затрагивает только один фермент, но происходит очень быстро (доля секунд) и служит для тонкой настройки путей обмена веществ. Генная регуляция, затрагивающая обычно несколько ферментов одновременно, более экономична по сравнению с ферментной, поскольку ферменты, в которых нет необходимости, просто не синтезируются генная регуляция занимает больше времени, так как включается трансляция и чаще всего также и транскрипция. Эта форма регуляции служит для грубой настройки обмена веществ и имеет большое значение для процессов развития. [c.386]

    Эндокринные железы не имеют выводных протоков, и гормоны непосредственно поступают в кровь. Регуляция выделения гормонов осуществляется нейрогуморальным путем. Образование и выделение гормонов в кровь происходит под контролем центральной нервной системы. Нарушение некоторых функций нервной системы часто сопровождается наруше ием деятельности эндокринных желез. В свою очередь, нарушение функции некоторых эндокринных желез может оказывать влияние как на функцию других желез, так и на нервную систему. Действие гормонов разнообразно в процессе развития организма (эмбриональном и затем постнатальном) гормоны оказывают воздействие на обменные процессы, рост, развитие и дифференцировку тканей и органов гормоны возбуждают или тормозят функции того или иного органа. [c.192]


    Ф. Крик считает, что нуклеиновые кислоты более примитивны, чем белки. Возникновение жизни должно быть обязательно связано с нуклеиновыми кислотами, где они играли первостепенную роль. Белки по сравнению с нуклеиновыми кислотами имеют более сложную структуру, состоят из многочисленных и разнообразных мономеров и, следовательно, обладают большими возможностями взаимодействия и регуляции. Однако эти свойства белка возникли не сразу, а образовались в процессе развития жизни. Нуклеиновые кислоты, несмотря на относительную примитивность, обладают уникальным свойством определять собственное воспроизведение, что является необходимым атрибутом всего живого. Примитивные комплементарные взаимодействия — узнавание и регуляция, могут осуществляться самими нуклеиновыми кислотами, и, видимо, они играли доминирующую роль на заре жизни. Развитие и усложнение этих функций связано уже с [c.290]

    Во второй части появилась совершенно новая глава 16, посвященная регуляции экспрессии генов эукариот. Она в основном содержит результаты успешных исследований рекомбинантных ДНК. Материал главы, носившей этот номер, обновлен и составляет главу 17 Генетический анализ процессов развития . Новая глава 18 Генетика соматических клеток включает впечатляющие результаты исследований по картированию генома человека. Главы 11 и 12 обновлены с тем, чтобы отразить наше углубившееся понимание эволюции генетического кода и пот токов информации в клетках о главах 13 и 14 уже говорилось выше. [c.8]

    Клетки многоклеточного организма нуждаются в обмене информацией друг е другом - для регуляции своего развития и организации в ткани, для контроля процессов роста и деления и для координации функций. Взаимодействие животных клеток осуществляется тремя снособами 1) клетки выделяют химические вещества, служащие сигналами для других клеток, расположенных на некотором расстоянии 2) они несут на своей поверхности связанные с плазматической мембраной сигнальные молекулы, оказывающие влияние на другие клетки при непосредственном физическом контакте 3) образуют щелевые контакты, прямо соединяющие цитоплазму двух взаимодействующих клеток, что делает возможным обмен малыми молекулами (рис. 12-1). [c.338]

    Изучая гетерохронные мутации, исследователи столкнулись с еще одной сложной проблемой. Дело в том, что в процессе развития под контролем генома происходит уточнение программы деления клеток, а также программы клеточной дифференцировки и оба эти проявления клеточного поведения должны быть синхронизированы У гетерохронных мутантов нарушено и деление, и дифференцировка. Это наводит на мысль о регуляции обоих процессов одним механизмом, поврежденным вследствие мутации. [c.91]

    Исследования показывают, что бацитрацин играет определенную роль в процессе развития собственного продуцента и регуляции биосинтеза антибиотика. [c.108]

    Одним из условий дальнейших успехов на пути получения клеток и клеточных систем с новыми свойствами является углубление знаний, касающихся фундаментальных основ биологии механизмов регуляции процесса клеточной дифференциации, физиологии протопластов как объекта биологической трансформации клеток, взаимоотношений клеточных органелл. Следовательно, прогресс в развитии клеточной инженерии и использовании получаемых с ее помощью новых, создаваемых искусственным путем биологических объектов будет в значительной степени определяться успехами в области клеточной биологии и клеточной физиологии. [c.122]

    Различия между сложными локусами и обычными генами D. melanogaster весьма существенны. Исследованные гены плодовой мушки в большинстве своем имеют довольно небольшие размеры они либо не содержат интронов, либо входящие в их состав интроны невелики. Напротив, сложные локусы имеют огромные размеры, и при сплайсинге их первичного транскрипта образуются молекулы РНК, длина которых на порядок меньше длины локуса. Почему локусы, ответственные за регуляцию процесса развития взрослого насекомого из личинки (эмбриональная стадия), отличаются от генов, кодирующих обычные белки  [c.263]

Рис. 10.12. Нейроэндокринная система насекомых и ее роль в регуляции процесса развития в представлении художника (Сои(1гоп е1 а1., 1981). Рис. 10.12. <a href="/info/1358007">Нейроэндокринная система насекомых</a> и ее роль в <a href="/info/1338305">регуляции процесса развития</a> в представлении художника (Сои(1гоп е1 а1., 1981).
    На регуляцию морфогенеза существенно влияет качество света. Показано (Л. Коппель, 1992), что морфогенный каллус образуется чаще на синем свету, чем на белом или красном. Изменения на уровне индивидуальных белков во время реализации морфогенетической программы в культуре тканей позволили говоррггь о существовании белков развития. Однако отсутствие специфических тестов на эти белки не позволяет их выяврггь. Вместе с тем при использовании гибридов, продуцирующих моноклональные антитела на мембранные белки соматических зародышей, удалось выявить полипептид с молекулярной массой 45 кДа, который встречается в ядре нескольких видов растений и возможно участвует в регуляции клеточного деления (Г. Смит и др., 1988). В настоящее время большое внимание уделяется генетическому аспекту морфогенеза, изучению соматического эмбриогенеза как генетически наследуемого признака. Роль основного двигателя процесса развития отводится дифференциальной активности генов. Предполагается, что гены, контролирующие соматический эмбриогенез, начинают экспрессироваться в критические периоды развития эмбриоидов (H.A.Моисеева, 1991). [c.176]


    Таким образом, витамины - это пищевые незаменимые факторы, которые, присутствуя в небольших количествах в пище, обеспечивают нормальное развитие организма животных и человека и адекватную скорость протекания биохимических и физиологических процессов. Нарушения регуляции процессов обмена и развитие патологии часто связаны с недостаточным поступлением витаминов в организм, полным отсутствием их в потребляемой пище либо нарушениями их всасывания, транспорта или, наконец, изменениями синтеза коферментов с участием витаминов. В результате развиваются авитаминозы- ожшк, возникающие при полном отсутствии в пище или полном нарушении усвоения какого-либо витамина. Известны так называемые гиповитамтозы, обусловленные недостаточным поступлением витаминов с пищей или неполным их усвоением. Практически у человека встречаются именно эти последние формы заболевания, т.е. состояния относительной недостаточности витаминов. В некоторых районах стран Азии, Африки и Южной Америки, где население употребляет однообразную, преимущественно растительную, пищу, встречаются иногда случаи полного авитаминоза. В литературе описаны также патологические состояния, связанные с поступлением чрезмерно больших количеств витаминов в организм (гипервитамшозы). Эти заболевания встречаются реже, чем гиповитаминозы, однако описаны случаи гипервитаминозов А, D, К и др. [c.205]

    Зарождение науки об эндокринных железах и гормонах относится к 1855 г., когда Т. Аддисон впервые описал бронзовую болезнь, связанную с поражением надпочечников и сопровождающуюся специфической пигментацией кожных покровов. Клод Бернар ввел понятие о железах внутренней секреции, т.е. органах, выделяющих секрет непосредственно в кровь. Позже Ш. Броун-Секар показал, что недостаточность функции желез внутренней секреции вызывает развитие болезней, а экстракты, полученные из этих желез, оказывают хороший лечебный эффект. В настоящее время имеются бесспорные доказательства, что почти все болезни желез внутренней секреции (тиреотоксикоз, сахарный диабет и др.) развиваются в результате нарушения молекулярных механизмов регуляции процессов обмена, вызванных недостаточным или, наоборот, избыточным синтезом соответствующих гормонов в организме человека. [c.249]

    ГИББЕРЕЛЛЙНЫ м мн. Растительные гормоны, которые участвуют в прорастании семян, регуляции роста стебля и других процессах развития растений. [c.98]

    Координированные процессы клеточного деления, роста и дифференцировки, лежащие в основе развития растительного организма, контролируются как внешними, так и внутренними факторами. К внешним факторам относятся, например, гравитация, температура, продолжительность и интенсивность освещения. Механизмы воздействия этих факторов на процессы развития очень сложны, и мы не будем их здесь касаться. Внутренние факторы, участвующие в регуляции роста и развития растений,-это так называемые фатогормоны. [c.202]

    Диалог симбионтов с защитньши системами хозяина. При образовании симбиоза у бобовых растений индуцируется ряд процессов, весьма сходных с защитными реакциями, наблюдаемыми при внедрении патогенных микробов. Это синтез флавоноидов, фенолов, хитиназ, каллозы и пероксидаз. Однако в клубеньках эти реакции выражены не столь сильно, как при инфицировании патогенами, и их результатом является не инактивация микроорганизмов, а регуляция их размножения и метаболической активности. Это происходит потому, что в процессе развития симбиотической системы наблюдается тонко сбалансированное взаимодействие бактерий с защитными системами растений. [c.176]

    Первичным источником белка на нашей планете являются растительные организмы с их замечательной способностью синтезировать белок из углекислоты, воды и неорганических источников азота. Поэтому понятно, какое большое теоретическое значение имеет исследование генетических и биохимических механизмов процессов, лежащих в основе усвоения азота растениями и его превращений в аминокислоты и белки. Ассимиляция нитрата у большинства культур — это основной способ превращения неорганического азота в органические соединения. При этом нитрат превращается в аммоний за счет действия механизма поглощения нитрата и двух ферментов нитратредуктазы (НР) и нитритредуктазы (НИР). Таким образом, азот становится доступным для многих биосинтетических процессов, наиболее важным из которых с количественной точки зрения является синтез белка. Сейчас известно, что в регуляции процессов на этом пути определенную роль играют доступность нитрата и гормонов, свет и конечные продукты реакции. Данные физиологических и биохимических исследований, однако, почти не раскрывают молекулярные механизмы, лежащие в основе развития и регуляции реакций, входящих в этот процесс. Такая информация очень важна, если ученые стремятся понять, каким образом новые методы молекулярной биологии могут быть использованы для повышения эффективности ассимиляции нитрата и, следовательно, повышения содержания белка в растениях. [c.378]

    В процессе развития при постоянной структуре ДНК последовательно изменяется состав РНК (состав оснований) и белков (электрофоретические свойства, ферментативная активность). Эта биохимическая дифференциация является не следствием, а причиной морфологической дифференцировки. Механизм активации и блокирования генов до конца не изучен. Ученые полагают, что по-видимому имеют место хромосомные регуляции при участии гистонов — ядерных белков и процессы индукции и репрессии согласно теории Жакоба — Моно. [c.391]

    Регуляция синтеза генного продукта в процессе развития и дифференцировки (эпигенетика). Как упоминалось ранее, Жакоб и Моно обобщили гипотезу оперона и регуляторного гена для случая регуляции синтеза генного продук-394 [c.394]

    Регуляция скорости синтеза белков. Такое действие оказывают стероидные и тиреоидные гормоны они проникают в клетку и взаимодействуют со специфическими рецепторами. Гормонрецепторный комплекс проникает в ядро, связывается с хроматином и увеличивает скорость синтеза белков на уровне генов (рис. 51). Активные гены усиливают синтез определенной РНК, которая выходит из ядра, поступает к рибосомам и запускает синтез новых белков, которые могут быть структурными или сократительными белками мышц и других тканей, а также ферментами или гормонами. В этом состоит их анаболическое действие. Однако скорость белкового синтеза в клетках — относительно медленный процесс, так как требует большого количества энергии и пластического материала. Поэтому такие гормоны не могут осуществлять быстрый контроль процессов метаболизма. Основная их функция сводится к регуляции процессов роста, развития и дифференцировки клеток организма. [c.138]

    Вопрос о регуляции синтеза белков относится к центральным проблемам современной биологии. Существование любых живых организмов зависит от наличия гибкой, согласованно действующей системы регулирования. Все ее элементы теснейшим образом связаны друг с другом и взаимно информируются об изменениях, на которые немедленно реагируют целесообразным действием. Клетка синтезирует лишь те белки, которые ей требуются в данный момент. При перемене условий существования прекращается синтез одних и начинается синтез других ферментов. В процессе развития и созревания клеток, в процессе их диффе-ренцировки у многоклеточных организмов каждая фаза развития характеризуется своим набором синтезируемых в клетке белков. [c.291]

    Считают, что гомеозисные гены регулируют переключение функций в процессе развития, действуя в пределах (жределенных участков тела особи, возможно, кодируя белки, взаимодействующие с определенной батареей генов, продукты которых придают клеткам каждого такого участка их неповторимую индивидуальность. Существуют ли сходные механизмы регуляции у позвоночных и беспозвоночных, несмотря на весьма существенные различия в их организации Удалось ли нам обнаружить универсальный механизм регуляции эмбрионального развития  [c.264]

    Природа дефектов ооплазмы, вызываемых этими мутациями, известна только в очень немногих случаях. На основе имеющихся в настоящее время данных невозможно определить, приводит ли большинство из этих мутаций к нарушению общего метаболизма или же к нарушению функций, необходимых для регуляции активности генов в эмбриональных клетках в процессе развития. Впрочем, по крайней мере некоторые из мутаций с материнским эффектом оказывают сильное влияние на развитие эмбриона. [c.262]

    Молекулярные механизмы, лежашие в основе примеров генетической регуляции, описанной в этой главе, в основном неизвестны. Однако генетический анализ сложных процессов развития позволил идентифицировать гены, играющие важную - возможно, даже главную-роль в процессах развития, как, например, гены ВХ-С у дрозофилы или Т локус у мыши. Генетические исследования помогают понять сложность генетических регуляторных механизмов, управляющих процессами развития, и сформулировать гипотезы, касающиеся их функций. Методики, использующие рекомбинантную ДНК, в настоящее время применяются для клонирования генов, играющих важную роль в процессе развития. С помощью этих методов изучают структуру генов и транскрипцию в отдельных клетках развивающегося зародыша. Первые результаты таких исследований мы обсуждали в гл. 16 при рассмотрении генов глобина человека. Вскоре появятся новые результаты. [c.283]

    В процессе развития из отоОотворенной яйцеклетки возникает множество клеток различных типов. За реоким исключением геномы дифференцированных клеток сохраняются в неизменном состоянии, изменяется лишь характер экспрессии генов. Различия, возникающие между клетками, могут быть следствием неравного распределения цитоплазматических детерминантов в яйцеклетке до начала деления или следствием последовательного изменения клеточного окружения в эмбрионе. Например, у Xenopus бластомеры анимального и вегетативного полушарий наследуют различные цитоплазматические детерминанты. Бластомеры вегетативного полушария индуцируют анимальные бластомеры к развитию по мезоОермальному пути в отсутствие такого воздействия анимальные бластомеры бают начало эктодерме. Индукция опосредуется сигнальными молекулами (ФРФ и ТФ р2 или их аналогами), которые в организме взрослых животных участвуют в регуляции роста и дифференцировки клеток. [c.84]

    Использование основных приемов работы с рекомбинантной ДНК и методик анализа белков и нуклеиновых кислот позволяет клонировать гены и изучать их организацию (блоттинг-гибридизация по Саузерну), строение мРНК (нозерн-блоттинг),. а также следить за уровнем экспрессии генов в различных условиях окружающей среды и даже в процессе развития. Например, в некоторых случаях уровни транскрипции гена определяют методом дот-блот-гибридизации выделенной РНК (разд., 6.3). Более подробные качественные исследования транскрипционной активности осуществляют с помощью нозерн-блоттинга (приложение 6 [I]). 5 - и З -концы транскриптов определяют, используя Sl-картирование [2, 56]. Однако такие методы анализа позволяют установить только строение транскрибируемой области или гена, а также механизмы процессинга транскриптов и их трансляции. Функцию любых участков вне транскрибируемой последовательности в некоторой степени можно изучать, сравнивая гены, обладающие сходными механизмами регуляции. При этом большинство предположений о воздействии на экспрессию гена остаются исключительно в области догадок. В этом случае генетическая трансформация предоставляет исследователю, работающему с растениями, уникальную-возможность непосредственно отвечать на фундаментальные вопросы, касающиеся регуляторной функции последовательностей, расположенных как в непосредственной близости, так и на некотором расстоянии от 5 - и З -концов транскрибируемого-гена. Используя разнообразные методы мутагенеза in vitro и технологию рекомбинантных ДНК, удается, модифгщировать клонированные гены и затем после введения мутантного гена-путем генетической трансформации обратно в растения анализировать влияние изменения этого гена на его экспрессию.. Подобные методики способствовали изучению нуклеотидных [c.307]


Смотреть страницы где упоминается термин Регуляция процесса развития: [c.187]    [c.126]    [c.323]    [c.178]    [c.178]    [c.9]    [c.419]    [c.265]    [c.413]    [c.248]    [c.114]    [c.5]    [c.49]   
Смотреть главы в:

Физиология растений -> Регуляция процесса развития




ПОИСК





Смотрите так же термины и статьи:

Процесс развития

Регуляция

Средства и методы защиты растений, борьбы с вредителями и биологической регуляции процессов роста и развития

Сцепленные гемоглобиновые, регуляция в процессе развития

Трансляционная и посттрансляционная регуляция процессов развития. Перевод B.. Михайлова



© 2024 chem21.info Реклама на сайте