Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция дифференцировки

    Лимфоциты и приобретенный иммунитет Другая важнейшая группа лейкоцитов — это лимфоциты. Им принадлежит ведущая роль во всех реакциях приобретенного иммунитета, поскольку они специфически распознают конкретный возбудитель, где бы он ни находился, внутри или вне клеток, в тканевой жидкости или в крови. Существуют различные типы лимфоцитов, но основных популяций две Т-лимфоциты (или Т-клетки) и В-лимфоциты (или В-клетки). Последние противодействуют внеклеточным возбудителям и влиянию их продуктов, образуя антитела, молекулы которых способны специфически распознавать и связывать определенные молекулы-мишени — антигены. Антигенами могут служить молекулы на поверхности клеток микроорганизмов либо образуемые ими токсины. Т-лимфоциты, точнее разные их популяции вместе, обладают широким набором активностей. Одни Т-клетки участвуют в регуляции дифференцировки В-лимфоцитов и [c.2]


Рис. 5.7. Схема регуляции дифференцировки репродуктивной системы плода Рис. 5.7. <a href="/info/25482">Схема регуляции</a> дифференцировки <a href="/info/1280807">репродуктивной системы</a> плода
    Регуляция жизнедеятельности сложного многоклеточного организма в огромной степени зависит от химических сигналов, передаваемых от одних клеток к другим. Один из основных способов коммуникации — это секреция гормонов в кровоток. Значительно менее изучен процесс химического обмена информацией через межклеточные контакты (гл. 1, разд. Е, 3, в). Этот процесс лучше всего исследован на нервных клетках, и в настоящее время нейрохимия стала одним из основных направлений биохимии. Коммуникация между клетками играет большую роль в эмбриональном развитии и в дифференцировке тканей. Правда, рост и развитие клеток регулируются не только внешними, но и внутренними факторами последние определяются программами развития, закодированными в ДНК. В настоящей главе мы рассмотрим кратко как упомянутые вопросы, так и коммуникацию между организмами, т. е. биохимию экологических взаимосвязей. [c.316]

    Тотальная регуляция скорости элонгации отмечается по ходу прохождения разл. стадий клеточной дифференцировки, под действием ряда гормонов, при вирусных инфекциях. [c.623]

    Биологическая роль андрогенов в мужском организме в основном связана с дифференцировкой и функционированием репродуктивной системы, причем в отличие от эстрогенов андрогенные гормоны уже в эмбриональном периоде оказывают существенное влияние на дифференцировку мужских половых желез, а также других тканей, определяя характер секреции гонадотропных гормонов у взрослых. Во взрослом организме андрогены регулируют развитие мужских вторичных половых признаков, сперматогенез в семенниках и т.д. Следует отметить, что андрогены оказывают значительное анаболическое действие, выражающееся в стимуляции синтеза белка во всех тканях, но в большей степени в мышцах. Для реализации анаболического эффекта андрогенов необходимым условием является присутствие соматотропина. Имеются данные, сввдетельствую-щие об участии андрогенов в регуляции биосинтеза макромолекул в женских репродуктивных органах, в частности синтеза мРИК в матке. [c.283]


    Полиамины, к которым относят также диамин путресцин, играют важную роль в процессах клеточного роста и дифференцировки, в регуляции синтеза ДНК, РНК и белка, стимулируя транскрипцию и трансляцию (см. далее), хотя конкретный механизм участия их в указанных процессах не всегда ясен. [c.446]

    Строение и свойства других важнейших биополимеров — нуклеиновых кислот—существенно отличны от строения и свойств белков. Это различие выражает принципиальную разницу биологических функций. Можно сказать, что функция белков— исполнительная, в то время как функция нуклеиновых кислот— законодательная, поскольку она сводится к участию в синтезе белка. В конечном счете главный молекулярный процесс, лежащий в основе всей биологии, — матричный синтез биополимеров, реализуемый в транскрипции и трансляции (а также в обратной транскрипции). Физические основы этих явлений описаны в книге. Однако мы ограничились рассмотрением простейших модельных процессов, реализуемых в бесклеточных системах, и не затрагивали процессы регуляции матричного синтеза, т. е. регуляции действия генов. Очевидно, что клеточная дифференцировка, морфогенез и онтогенез в целом не могли бы реализоваться без такой регуляции. В самом деле, в любой соматической клетке многоклеточного организма наличествует тот же геном, что и в исходной зиготе, но функции соматических клеток различны, так как в них синтезируются разные белки. Регуляция действия генов осуществляется на молекулярном уровне в системе оперона у прокариотов или транскриптона у эукариотов. Рассмотрение этих систем выходит за рамки книги. [c.610]

    Такого рода регуляция наблюдается у куриных эмбрионов только на ранних стадиях развития конечности, задолго до начала дифференцировки какой-либо из тканей зачатка. На несколько более поздних стадиях после пересадки отдельных фрагментов зачатка конечности таких взаимодействий не происходит каждая часть зачатка ведет себя автономно в соответствии со своей индивидуальной предысторией. Однако у некоторых животных способность к подобной регуляции сохраняется всю жизнь, и они могут восстанавливать утраченные части тела. Примеры этого будут рассмотрены ниже. [c.104]

    Эволюция эукариот. Эукариотические клетки, видимо, возникли лишь тогда, когда в атмосфере появился кислород. Все эукариоты, за очень малым исключением,-аэробные организмы. Прокариоты занимали много различных экологических ниш. Выработка разнообразных типов метаболизма у прокариот была, по-видимому, обусловлена простой структурой клетки, высокоразвитыми системами регуляции, быстрым ростом и наличием нескольких механизмов переноса генов. На пути дальнейшей эволюции прокариот стояли непреодолимые трудности, связанные прежде всего с малыми размерами генома, его гаплоидным состоянием и малой величиной клеток. Новая окружающая среда с аэробными условиями позволяла получать больше энергии, но для ее использования нужны были более крупные клетки, широкие возможности структурной дифференцировки и соответственно во много раз больший [c.521]

    Но это на самом деле неверно. Конечно, в основе дифференцировки лежит процесс регуляции, однако не всякая регуляция непременно приводит к (сохраняющейся) дифференциации. И потому вовсе не бессмысленно искать у бактерий регуляторные механизмы. Мало того, именно с них и следует начинать — это замечательно удобный объект для экспериментирования, им мы уже обязаны важнейшими открытиями в области генетики. [c.272]

    Регуляция экспрессии генов. Фитогормональная регуляция экспрессии генов обусловливает такие важнейшие процессы в жизни растительной клети, как дифференцировка и дедифференцировка, деление, рост и адаптация к новым метаболическим условиям. Среднее время фитогормональной регуляции работы генома исчисляется несколькими часами. В то же время растение способно ответить на изменение уровня некоторых гормонов всего за несколько десятков минут. Эти быстрые реакции связаны со способностью фитогормонов регулировать активность уже существующих ферментов растительной клетки. [c.335]

    Физиологические эффекты ауксина связаны с его действием на клеточном уровне, которое проявляется в регуляции растяжения, деления и дифференцировки. [c.336]

    Эндокринные железы не имеют выводных протоков, и гормоны непосредственно поступают в кровь. Регуляция выделения гормонов осуществляется нейрогуморальным путем. Образование и выделение гормонов в кровь происходит под контролем центральной нервной системы. Нарушение некоторых функций нервной системы часто сопровождается наруше ием деятельности эндокринных желез. В свою очередь, нарушение функции некоторых эндокринных желез может оказывать влияние как на функцию других желез, так и на нервную систему. Действие гормонов разнообразно в процессе развития организма (эмбриональном и затем постнатальном) гормоны оказывают воздействие на обменные процессы, рост, развитие и дифференцировку тканей и органов гормоны возбуждают или тормозят функции того или иного органа. [c.192]


    Таким образом, можно заключить, что в основе клеточной дифференцировки лежит пе постоянное изменение состава генома клеток, а различное выражение мириад генов, содержащихся в геноме. Это означает, что механизмы эмбрионального развития следует объяснить, исходя из представлений о регуляции работы генов, подобных описанным в гл. XX для прокариотов. С одним примером такого дифференцированного выражения генов в развитии мы уже сталкивались в начале этой главы в случае тысячекратной репликации ДНК ядрышкового организатора в ооцитах амфибий. Следует отметить, что подобный способ регуляции, основанный на факультативной репликации отдельных генов с целью увеличить матричную емкость этих генов в транскрипции, не встречается у прокариотов (и поэтому мы его не обсуждали в гл. XX). [c.513]

    Ванюшин Б. Ф. Метилирование ДНК у эукариот — новый механизм регуляции экспрессии генов и клеточной дифференцировки//Усп. биол. химии. 1983. Т, 24. С, 170—193. [c.221]

    Ярким примером такого рода регуляторных переключений являются события, происходящие в ответ на тепловой шок. Процессы клеточной дифференцировки также сопровождаются включением в Т. новых мРНК, иногда накопленных в цитоплазме заранее, а также изменением скоростей Т. и выключением нек-рых мРНК из Т. Регуляция синтеза белков на Зфовне Т. играет важную роль у всех организмов, включая бактерии, в координации продукции разл. белков в клетке и поддержании их правильных стехиометрич. соотношений (это особенно касается поддержания стехиометрии синтеза субъединиц сложных белков). [c.622]

    В-третьих, ДНК транскрибируется, и транскрипция различных генов тонко регулируется, в частности, на различных стадиях клеточного цикла и в процессе дифференцировки многоклеточных организмов. Гистоны, связанные с ДНК, влияют на этот процесс, они должны или удалять. я с ДНК в момент транскрипции, или каки.м-то иным способом ппопускать РНК-полимеразу. Механизмы узнавания белками определенных последовате тьностей ДНК у эукариот изучены в горазло меньшей степени, чем у прокариот. Возможно, у эукариот важную роль в этом процессе играют белок-белковые взаимодейств 1я. Многие эукариотические гены подчиняются нескольким различным регуляторным сигналам, поэтому их система регуляции весьма сложна и наверняка включает несколько белков. [c.234]

    В нетранскрибируемых последовательностях генома перед экзон-интронами открыты специфические участки, названные промоторами, а также энхансерами (повышающие уровень транскрипции) и силан-серами (ослабляющие уровень транскрипции). При взаимодействии с белками они выполняют функции регуляторных сигналов при транскрипции. Этот способ регуляции широко используется клетками эукариот как в процессах дифференцировки, так и при индукции репрессии (см. главу 14). [c.493]

    Рассмотрим кратко вопрос о регуляции процессов дифференцировки клеток высших организмов. ДНК, присутствующая во всех соматических клетках, вероятнее всего, имеет одинаковую первичную структуру у данного организма и соответственно располагает информацией для синтеза любых или всех белков тела. Тем не менее клетки печени, например, синтезируют сывороточные белюг, а клетки молочной железы —белки молока. Нет сомнения в том, что в дифференцированных клетках имеется весьма тонкий механизм контроля деятельности ДНК в разных тканях, обеспечивающий синтез многообразия белков. [c.540]

    Хромосомная ДНК, как правило, сверхспирализована. Как это было впервые показано в лаборатории Георгиева в 1982 г. (Лучник и Бакаев), сверхспирализация ДНК играет важную роль в биологической активности генома. Различные нуклеотидные последовательности в молекуле ДНК конкурируют за упругие витки и энергию сверхспирализации, поглощая их в конформационных переходах. Было установлено напряженное состояние ДНК в транскрипционно-активном хроматине вируса 8У40. Конформационные изменения, связанные с этими напряжениями, имеют прямое значение для регуляции генов. Сверхспирализация генома изменяется при дифференцировке, старении и элока-чественной трансформации клеток. [c.257]

    Все соматические клетки данного многоклеточного органп 1ма содержат один и тот же набор генов, тождественный геному исходной аиготы. (Мы отвлекаемся от соматических мутаций.) В то же время клетки различных тканей отличаются друг от друга и морфологически, и функционально. Их различия сводятся к тому, что в разных клетках одного и того же организма функционируют различные белки. Это означает, что в разных клетках работают разные гены и молекулярный смысл дифференцировки клеток состоит в регуляции работы генов. В клетке данного сорта трансляция осуществляется лишь для малой доли имею-1ЦИХСЯ генов. [c.294]

    Само деление клеток, начиная с появления двух первых бластомеров, есть результат внутриклеточных взаимодействий, регуляции активности генов веществами цитоплазмы п клеточной мембраны. Дифференцировка на ранней стадии (бластула) определяется двумя причинами, имеющими самый общий характер. Первая из них — неоднородное распределение вещества в цитоплазме исходной зиготы, вторая — неоднородность среды внутри клеточного шара, получающегося в результате дробления. II то, и другое означает наличие позиционной информации (Вольперт). Наряду с этими факторами онтогенез определяется контактной и гуморальной регуляцией. [c.574]

    Важное значение в регуляции процессов дифференцировки и размножения клеток имеет протеинкиназ а С. Этот фермент активируется, как и протеинкиназы класса А, в результате взаимодействия специальных рецепторов клеточной мембраны с соответствующими эффекторами, которыми в случае протеинкиназы С являются некоторые гормоны и факторы роста. Активированная протеинкина-за С катализирует фосфорилирование определенного набора белков, что, по-видимому, является промежуточным этапом каскада превращений, заканчивающегося в ядре запуском репликации ДНК и сопутствующих процессов. [c.427]

    В то время как контакт с базальной мембраной может определять выбор между выживанием клетки в качестве стволовой и ее гибелью в результате терминальной дифференцировки, другие факторы должны регулировать скорость образования новых эпидермальных клеток. Предполагается, что в этом участвуют различные гормоны и факторы роста (разд. 13.1.7). Например, если внешние слои эпидермиса соскоблить, то скорость деления базальных клеток увеличивается. Через некоторое время это приводит к восстановлению нормальной толщины эпидермиса, и скорость деления в базальном слое снова снижается до обычного уровня. Все происходит так, как будто деляпшеся клетки базального слоя освобояадаются от ингибирующего влияния наружных дифференцированных слоев после нх удаления, а затем вновь начинают испытывать это влияние, как только эпидермис полностью восстанавливается, Согласно одной из гипотез, в эпидермисе синтезируется фактор, называемый эпидермальным халоном (или кейлоном), который подавляет митозы в базальных слоях настолько, чтобы скорость образования дифференцированных клеток соответствовала потребности. Последствия нарушенной регуляции размножения базальных клеток можно наблюдать при псориазе. При этом распространенном заболевании кожи скорость пролиферации базальных клеток значительно повьШ1ена, эпидермис становится утолщенным и клетки слущиваются с поверхности кожи уже через неделю после их образования в базальном слое, еще не успев подвергнуться полному ороговению. [c.157]

    Молочная железа хорошо изучена в связи с гормональной регуляцией деления и дифференцировки ее клеток. Образование молока должно начинаться, когда рождается ребенок, и прекращаться, когда ребенка отнимают от груди. В молочной железе, в которой не образуется молоко и не происходит подготовки к его секреции, железистая ткань состоит из разветвленных систем выводных протоков, погруженных в соединительную ткань и выстланных в секреторных участках одним споем сравнительно неактивных эпителиальных клеток, среди которых встречаются и миоэпителиальные. На первом этапе подготовки к интенсивной выработке молока гормоны, циркулирующие в крови в период беременности, стимулируют здесь клеточную пролиферацию концевые отделы протоков растут и ветвятся, образуя небольшие рас-ширения-адьвеолы (рис. 16-28). Клетки, выстилающие альвеолы (рис. 16-29), являются секреторными, ио они не начинают выделять молоко (рис. 16-30), пока ие получат стимул в виде измененного набора гормонов в крови матерт после рождения ребенка. Когда ребенка отнимают от груди н кормление пре-гфащается, секреторные клетки дегенерируют, макрофаги уничтожают их остатки, большая часть альвеол исчезает и железа переходит в состояние покоя до тех пор, пока новая беременность не запустит опять весь цикл. Таким образом, молочная железа сильно отличается от эпидермиса способом регуляции и периодичностью обновления клеток, а также пространственной организацией этого процесса. [c.158]

    Образование эритроцитон (эри1ропоэз) контролируется путем гормональной регуляции клеточных делений, происходящих после определения пути дифференцировки [25, 28] [c.166]

    Координированные процессы клеточного деления, роста и дифференцировки, лежащие в основе развития растительного организма, контролируются как внешними, так и внутренними факторами. К внешним факторам относятся, например, гравитация, температура, продолжительность и интенсивность освещения. Механизмы воздействия этих факторов на процессы развития очень сложны, и мы не будем их здесь касаться. Внутренние факторы, участвующие в регуляции роста и развития растений,-это так называемые фатогормоны. [c.202]

    Таким образом, в процессе регуляции роста растений каждый из фитогормонов проявляет специфические свойства. Ауксин, например, усиливает дифференцировку стебля растущего побега и подавляет рост боковых почек. Гиббереллин вызывает растяжение междоузлий стебля, индуцирует стрелкование розеточных растений, изменяет форму листьев. Кинетин, задерживая старение листьев, обладает мобилизующим действием на транспорт питательных и гормональных веществ, а также, будучи нанесенным на растение, индуцирует рост боковых почек (Dostal, 1971). [c.96]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Итак, согласно нашей гипотезе, наиболее фундаментальным и важным отличием клеток друг от друга служит различие в типах содержащихся в них ферментов следовательно, дифференцировка осуществляется при посредстве механизмов регуляции синтеза этих ферментов каждой клеткой в процессе ее развития. В связи с этим при изучении дифференцировки и развития нам придется сосредоточить свое внимание именно на механизмах регуляции синтеза ферментов. Одним из белков, наиболее изученных на предмет регуляции его синтеза, является запасный глобулин семян гороха. Этот глобулин состоит из двух компонентов — легумина и вицилина, которые поддаются разделению. Оба эти компонента образуются только в развивающихся семядолях гороха и никогда не синтезируются в других клетках растений гороха. Это положение было доказано с помощью экспериментов, один из которых описан в табл. 64. В этих экспериментах от растений гороха брали различные органы и ткани и инку- [c.523]

    Создается впечатление, что регуляция передачи информации по существу идентична дифференцировке. Дифференцировка состоит в том, что из одной или нескольких одинаковых клеток возникают все более и более отличающиеся друг от друга дифференцированные клетки, специализированные для выполнения определенных функций. В таком случае, казалось бы, изучать системы регуляции можно лишь на высших, многоклеточных организмах. Одноклеточные, в особенности бактерии, можно игнориро- [c.271]

    В симбиозах азотфиксирующих микробов с фототрофными организмами осуществляется симбиогенное сопряжение двух фундаментальных биохимических процессов — азотфиксации и фотосинтеза. Однако было бы не совсем точным представлять симбиотическое взаимодействие как натуральный обмен N-метаболитов на фотосинтаты. В процессе взаимодействия многих растений с азотфиксирующими бактериями наблюдается весьма тесная структурно-функциональная интеграция партнеров, которая основана на перекрестной регуляции и координированной экспрессии бактериальных и растительных генов. Она может сопровождаться глубокой дифференцировкой клеток партнеров, а также установлением между ними тесных регуляторных отношений. [c.164]

    В процессе развития при постоянной структуре ДНК последовательно изменяется состав РНК (состав оснований) и белков (электрофоретические свойства, ферментативная активность). Эта биохимическая дифференциация является не следствием, а причиной морфологической дифференцировки. Механизм активации и блокирования генов до конца не изучен. Ученые полагают, что по-видимому имеют место хромосомные регуляции при участии гистонов — ядерных белков и процессы индукции и репрессии согласно теории Жакоба — Моно. [c.391]

    Регуляция синтеза генного продукта в процессе развития и дифференцировки (эпигенетика). Как упоминалось ранее, Жакоб и Моно обобщили гипотезу оперона и регуляторного гена для случая регуляции синтеза генного продук-394 [c.394]

    Регуляция скорости синтеза белков. Такое действие оказывают стероидные и тиреоидные гормоны они проникают в клетку и взаимодействуют со специфическими рецепторами. Гормонрецепторный комплекс проникает в ядро, связывается с хроматином и увеличивает скорость синтеза белков на уровне генов (рис. 51). Активные гены усиливают синтез определенной РНК, которая выходит из ядра, поступает к рибосомам и запускает синтез новых белков, которые могут быть структурными или сократительными белками мышц и других тканей, а также ферментами или гормонами. В этом состоит их анаболическое действие. Однако скорость белкового синтеза в клетках — относительно медленный процесс, так как требует большого количества энергии и пластического материала. Поэтому такие гормоны не могут осуществлять быстрый контроль процессов метаболизма. Основная их функция сводится к регуляции процессов роста, развития и дифференцировки клеток организма. [c.138]

    Циклические нуклеотиды участвуют в регуляции процессов транспорта ионов через клеточные мембраны, распада углеводов и жиров, модификации сократительных белков мышц, что влияет на функцию скелетных мышц и других органов. Доказана регуляторная роль циклических нуклеотидов в процессах клеточной дифференцировки, секреции гормонов. Циклическим нуклеотидам принадлежит главная роль в гормональной регуляции внутриклеточных процессов в различных тканях как вторичных передатчиков. [c.215]

    Молекулярная биология является одной из наиболее стремительно развивающихся наук. В настоящее время основные проблемы генетического кодирования и биосинтеза белка весьма интенсивно и с успехом решаются на бактериальных и вирусных объектах. Начались поиски принципиально новых, можно сказать, стратегических проблем. Намечаются две проблемы, которые выдвигаются биологией на передний план. Первая — это механизм клеточной дифференцировки. Вторая — это механизм нервной деятельности и память. Для перехода к этим проблемам необходимы новые идеи, новое научное мировоззрение, которое в свою очередь может возникнуть в процессе работы в контакте с морфологами, цитологами, эмбриологами, физиологами и т. п., владеющими всем запасо.м знаний по клеточной дифференциров-ке или по нервной деятельности. Молекулярная биология пока еще дает малый непосредственный выход в практику. На основании ее данных может быть интерпретирован лишь ряд фактов (в том числе практически значимых) в области бактериальных и вирусных мутаций, в понимании сущности некоторых вирусных инфекций, а также ряде наследственных заболеваний человека. Многие ученые считают, что возникновение злокачественного роста клеток связано с нарушением регуляции процесса биосинтеза белка. Познание этого важнейшего жизненного явления даст медикам более совершенные способы нормализации биосинтеза белка, а следовательно, и рациональные методы лечения многих заболеваний. В основе иммунитета лежит биосинтез белка и соответственно образование специфических антител (белков). Если овладеть по-настоящему процессом синтеза белка и научиться им управлять, то можно было бы повысить эффективность действия иммунизирующих веществ и тем самым повысить устойчивость организма к различным инфекционным заболеваниям. В настоящее время выдвинут ряд рабочих гипотез и теорий, которые еще требуют доказательств, но они освещают путь для дальнейших творческих исканий. [c.295]


Смотреть страницы где упоминается термин Регуляция дифференцировки: [c.364]    [c.364]    [c.226]    [c.123]    [c.125]    [c.234]    [c.296]    [c.259]    [c.215]    [c.171]    [c.348]   
Смотреть главы в:

Сборник Иммуногенез и клеточная дифференцировка -> Регуляция дифференцировки




ПОИСК





Смотрите так же термины и статьи:

Образование эритроцитов (эритропоэз) контролируется путем гормональной регуляции клеточных делений, происходящих после определения пути дифференцировки

Регуляция

Регуляция дифференцировки клеток

Регуляция размножения и дифференцировки кроветворных клеток



© 2025 chem21.info Реклама на сайте