Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки, гель-фильтрация

Рис. 73. Двухступенчатая очистка одного из негистоновых щелочных белков хроматина тимуса ( белок АК ) методом гель-фильтрации на биогеле Р-60 Рис. 73. <a href="/info/109863">Двухступенчатая очистка</a> одного из негистоновых <a href="/info/143464">щелочных белков</a> <a href="/info/1415841">хроматина тимуса</a> ( белок АК ) <a href="/info/176601">методом гель</a>-фильтрации на биогеле Р-60

    Диффузия в студнях лежит в основе гель-фильтрации — эффективного метода разделения молекул по их размеру. Этот метод позволяет отделять от макромолекул не только ионы солей, но и молекулы с низкой молекулярной массой. С помощью гель-фильтрации можно отделить полисахариды от моносахаридов, белки от аминокислот и других низкомолекулярных соединений. [c.268]

    В последние три года (1981 — 83 гг.) опубликовано довольно много работ по гель-фильтрации белков методом ЖХВД, и число примеров можно было бы умножить. Однако это вряд ли целесообразно, так как в большинстве случаев авторы ставят иеред собой одну и ту же (на наш взгляд, не самую важную для биохимика) задачу — про-вест1Г процесс гель-фильтрации белков или НК с максимальной скоростью, не очень заботясь о повышении его эффективности. С иных позиций выступила в начале 1982 г. фирма LKB , специалисты которой имеют давний и общепризнанный опыт в области методов фракционирования биологических макромолекул. [c.159]

    В этом разделе были высказаны общие соображения и приведены примеры, относящиеся к очистке и фракционированию нативных белков. Полная денатурация белков производится при оценке их молекулярной массы методом гель-фильтрации. Особенности хроматографии денатурированных белков рассмотрены ниже, в соответствующем разделе. [c.141]

    При исследовании белков гель-фильтрация пользуется особым вниманием как простой аналитический метод решения ряда задач, например определения молекулярно-весового распределе-иия в биологических жидкостях, сопоставления размеров белковых молекул, определения молекулярного веса на уровне нескольких микрограммов. Несомненным достоинством метода является возможность одновременного сравнения 30 образцов. [c.263]

    Фракционирование белков методом гель-фильтрации используется довольно редко, очевидно, ввиду низкой (по сравнению с другими хроматографическими методами) эффективности, присущей самому процессу (см. выше). Однако в тех случаях, когда число компонентов белковой смеси заведомо невелико, такое фракционирование может оказаться вполне эффективным приемом. Так, четыре главных белка вируса рака молочной железы мышей были успешно разделены по молекулярной массе методом гель-фильтрации их ком- [c.139]

    Гель-фильтрация. Готовят колонку (20x40 см), заполненную сефадексом 0-75 и уравновешенную 0,1 М сульфатом аммония, содержащим 1 мМ ЭДТА и 1 мМ дитиотреитол, pH 6,0. На колонку наносят около 2 мл раствора белка и пропускают раствор, используемый для уравновешивания колонки. Анализируют фракции элюата, определяя в них содержание белка и активность фермента. Собирают и объединяют фракции, содержащие наибольшее количество активного белка. Гель-фильтрацию можно повторить на той же колонке с новыми порциями раствора белка. Объединенные элюаты концентрируют путем осаждения белка сульфатом аммония (конечная концентрация —  [c.262]


    Основу руководства составили работы, которые на протяжении ряда лет используются в учебном процессе на кафедре биохимии 1 ММИ им. И. М. Сеченова. В практикум включены работы, знакомящие студентов с современными методами исследования и проблемами биохимии, такими, как электрофорез белков в полиакриламидном геле, ионообменная хроматография белков, гель-фильтрация, изучение четвертичной структуры белков и др. Подобраны и приспособлены к условиям работы в студенческой лаборатории современные методы выделения и изучения ферментов, их количественного определения в биологических жидкостях и тканях. Авторы стремились по возможности использовать в качестве объектов изучения биологические материалы, с которыми обычно имеет дело клиническая биохимия. [c.3]

    О двух последних столбцах речь пойдет ниже, а пока рассмотрим цифры, находящиеся в трех первых столбцах. Белки расположены в порядке увеличения объемов элюции (Уд) — соответственно увеличиваются и значения Следовало бы ожидать, что в этом же порядке будут уменьшаться молекулярные массы (М) белков, однако это не так. Фибриноген выходит из колонки первым, для него Kd = 0,03, т. е. намного меньше, чем для ферритина и уреазы, а между тем его молекулярная масса не больше, а меньше, чем у этих двух белков. Оставим в стороне ферритин — особый белок, в состав которого входит железо. Плотность ферритина р = 1,7, в то время как для подавляющего большинства нормальных белков р = 1,38. Но как объяснить несоответствие между значениями Kd и М для фибриногена и уреазы Kd фибриногена почти в 7 раз меньше, чем уреазы, а молекулярная масса его не больше, а в 1,5 раза меньше. Похоже на то, что основной закон гель-фильтрации ( чем меньше белок, тем больше Fr ) нарушается. [c.146]

    Эта формула показывает характер связи между массой белковой молекулы и ее стоксовым радиусом. Существует набор белковых молекул, для которых точно определены значения стоксовых радиусов. Такой набор, как мы увидим, можно использовать для построения калибровочных кривых при гель-фильтрации нативных белков. [c.148]

    Обессоливание и смена буфера с помощью гель-фильтрации широко используются в ходе очистки белков и пептидов для освобождения от сульфата аммония или в качестве промежуточной операции, подготавливающей препарат к последующему этапу хроматографии (ионообменной, аффинной или других видов). Если объем раствора белка изл еряется миллилитрами, то рутинную операцию его очистки нередко ведут вслепую . Однажды откалибровав небольшую колонку с сефадексом С-25, последующий отбор фракций, содержащих высокомолекулярные компоненты, производят по объему элюата, нередко просто путем отсчета капель. Соотношение объемов исходного раствора и колонки в этом случае может составлять примерно 1 10. В препаративных вариантах обессоливания, когда желательно максимально использовать объем колонки и избежать разбавления препарата, 5то соотношение можио увеличить до 1 3, контролируя выход хроматографических зон по УсГ-поглощению. Скорость элюции в таких опытах может быть значительной, порядка 20мл/см -ч (скорость продвижения фронта зоны очищаемого вещества по колонке — 20 см/ч). [c.137]

    Рассматривая последний столбец, можно высказать предположение, что ненормальное поведение молекул фибриногена при гель-фильтрации обусловлено исключительно большим значением их коэффициента формы. Молекулы фибриногена вытянуты в палочки ( глобулярными называют белки, для которых ///о 1,3). Свободно диффундирующая под действием броуновских сил палочка с трудом проникает в поры геля, постоянно цепляясь за нити [c.148]

    ТСГФ удобно использовать в качестве экономного пробного метода для выбора типа геля и скорости элюции при подготовке препаративной очистки белка гель-фильтрацией на колонке. Малое количество необходимого препарата и возможность одновременного обследования нескольких препаратов делает метод ТСГФ привлекательным и для клиники, где он может дополнить, а иногда и заменить электрофорез и электрофокусирование. [c.165]

    Тонкослойный вариант гель-фильтрации был предложен Детер-маном [6], а также Иоханссоном и Римо [11 ] и оказался весьма полезным для микроанализа и быстрого сравнительного анализа нескольких образцов исследуемого материала. Эндрюс [1 ], а позднее Моррис [12] применили тонкослойную гель-фильтрацию для определения молекулярного веса белков на основе установленной ими линейной зависимости между логарифмом молекулярного веса данного белка и расстоянием, пройденным им в слое данного носителя за определенный помежуток времени. В соответствии с этим можно ориентировочно определять молекулярные веса неизвестных белков, если одновременно проводить гель-фильтрацию стандартных белков известного молекулярного веса. Когда исследователь располагает достаточно чувствительными методами обнаружения белка в слое носителя, для определения молекулярного веса достаточно всего лишь нескольких микрограмм исследуемого материала. При определении молекулярного веса белков гель-фильтрацией в тонком слое следует иметь в виду, что подвижность данного белка при хроматографии в гель зависит не только от молекулярного веса, но и от формы его молекул. Поэтому определение молекулярного веса с помощью гель-хроматографии правомерно лишь в том случае, когда форма молекул исследуемого белка незначительно отличается от < рмы молекул стандартных белков, используемых для калибровки. [c.238]


    При групповом разделении методом гель-фильтрации удается в значительной мере избежать разбавления, если учитывать объемные соотношения, подробно рассмотренные в разделе Обессоливание . При очистке суспензии вируса (выделенного из столовой свеклы) от сопутствующих пигментов путем гель-фильтрации на 4—6-кратном (по отнощению к объему образца) объеме сефадекса 0-75 разделение составляло лишь 20—30% [14]. Свободные от белков катехоламины — адреналин и норадреналин — были выделены без разбавления из 20 мл сыворотки (27% объема колонки) гель-фильтрацией на сефадексе 0-25 (2X25 сж, 78 мл) [15]. Кислюк [16] показал, что с помощью гель-фильтрации на сефадексе 0-50 удается гораздо легче отделить фермент от его кофакторов, чем с помощью диализа. Таким путем удается получить кофакторы в сравнительно небольшом объеме и изучить эффект их вторичного присоединения к ферменту. После гель-фильтрации был выделен совершенно неактивный белок, активность которого вновь восстанавливалась (до 86% исходной) после добавления низкомолекулярной фракции. При диализе активность фермента снижалась только до 38% [16]. Групповое разделение гель-фильтрацией оказалось чрезвычайно удобным методом отделения низкомолекулярных антигенов от антител. Диссоциацию комплекса антиген — антитело часто осуществляют, добавляя избыток гаптена, который затем можно легко отделить от белка гель-фильтрацией [17]. В бактериологии гель-фильтрация на сефадексе 0-75 или биогеле Р-100 может служить для удобного выделения экстрацеллюлярных токсинов. Перед засевом культуральную среду освобождают от высокомолекулярных примесей гель-фильтрацией. Затем на той же колонке после удаления бактерий можно вновь отделить высокомолекулярные токсины от культуральной среды [18]. [c.142]

    О высокой эффективности разделения белков гель-фильтрацией в тонком слое свидетельствуют результаты модельного опыта, приведенные на рис. 2. В этом случае на тонком сефадексе 0-75 достигнуто полное разделение смеси, содержащей а-лактальбумин, р-лактоглобулин и альбумин из сыворотки быка более того, альбумин дал два пятна, соответствующие мономеру и димеру. При фракционировании на колонке такого разделения достигнуть не удалось [6]. Иоханссон и Римо [8] получили удовлетворительное разделение сывороточных белков на сефадексе 0-200. Белки нормальной сыворотки человека были [c.263]

    РИС. 6.6. Градуировочные графики разделения белков гель-фильтрацией в растворе ДСН на колонках Т8К S V. Вуфер 0,1 А ЫаИ9р04, pH 7 содержащий 0,1% ДСН [81. [c.207]

    Методика 1 [18]. Объединяют фракции элюата, содержащие тиогидаи-тоин белка растворитель удаляют в вакууме. Остаток растворяют в 1,0 мл 12 М H I и оставляют при комнатной температуре на 30, мин. Соляную кислоту удаляют путем быстрого упаривания в вакууме. Остаток растворяют в 50%-ной уксусной кислоте, отщепленный тиогидантоин отделяют от укороченного белка гель-фильтрацией, как описано выше. Растворитель немедленно упаривают, добавляют небольшой объем метанола и без промедления (так как тиогидантоины неустойчивы на свету и на воздухе) идептифицируют тиогидантоин методом ТСХ. [c.503]

    Еще одна особенность хроматографии макромолекул связана с проблемой доступности всего объема неподвижной фазы внутри гранул. Ограничение такой доступности вследствие статистического разброса размеров пор пространственной сеткн гранул используется для фракционирования макромолекул по размерам в методе гель-фильтрации, одиако в других вариантах хроматографии ограничение доступности не только уменьшает емкость системы, но и существенно затрудняет установление равновесия в неподвижной фазе. В этом плане обычные микропористые обменники на основе силикагеля, стекла п полистирола существенно уступают крупнопористым матрицам из целлюлозы и даже декстрана. К сожалению, матрицы двух последних типов легко деформируются и потому непригодны для хроматографии при повышенном давлении. Правда, в последние годы путем специальной обработки удалось получить крупнопористые, пригодные для фракционирования белков матрицы и из перечисленных выше жестких материалов их марки и характеристики приведены ниже. [c.47]

    Использование гель-фильтрации для освобождения от радиоактивных предшественников неоднократно цитировалось при описании методов введения радиоактивной метки в белки и нуклеиновые кислоты [Остерман, 1983]. Нередко обессоливание используют и на заключительном этапе очистки для освобождения не только от соли, но и от прочих низкомолекулярных примесей. Например, в одной из работ по выделению РНК-полимеразы очисткой белка на биогеле А-1,5т завершалась целая серия операций, включавшая различные варианты переосаждений белка и ионообмениой хроматографии [Vaisius, Horgen, 1979]. [c.138]

    Накоплен большой оиыт псиользования гель-фильтрации для очистки рибосом, полисом и ферментов, участвующих в биосинтезе белка и образующих комплексы с нуклеиновыми кислотами, нуклеотидами, а также аминокислотами. Например, при исследовании аминоацилирования тРНК для отделения аминоацил-тРНК-син-тетаз и их комплексов с АТФ и аминокислотами от свободных ами- [c.141]

    Гель-фпльтрацию широко используют для определения молекулярных масс биополимеров, особенно белков. Чем меньше белок, тем больше объем элюции его с колонки (Fr) это, как мы видели,— основной закон гель-фильтрации. Графики селективности ясно указывают иа наличие линейной связи между логарифмом молекулярной массы белка (log М) и величиной Ка (или К ) в определенном интервале значений М для каждого типа геля. Казалось бы, задача этим решается. Достаточно определить в эксперименте значение для данного белка — и с помощью фирменного графика селективности можно будет найти log М, а следовательно, и М. Если довольствоваться весьма приближенным результатом, то можно так и поступить. Однако при более пристальном изучении этой проблемы с целью получить относптельно точные значения М она оказывается значительно слояшее. Прежде всего, фирменные графики селективности носят ориентировочный характер, и для разных партий одного и того же геля истинные зависимости log М от Кдч отличаются друг от друга. Это можно обойти, если построить самому такой график (калибровочную прямую) с помошью набора белков известной массы. Но тут-то и возникает главная трудность. Какие белки выбрать для такого построения Ответа на этот вопрос поищем сначала для случая нативньсх белков. [c.145]

    Однако это не так. Дело в том, что под словом меньше мы не вправе подразумевать молекулярную массу белка, а должньс оценивать тот параметр, который действительно определяет возможность проникновения белка в поры геля,— его молекулярные размеры. Но если плотности всех нативных белков (за немногими исключениями) почти одинаковы, то их размеры, а точнее объемы, должны быть пропорциональны массам. Это верно, но остается еще один фактор, играющий в этом рассмотрении ключевую роль,— форма молекулы. Белковая глобула может быть почти шаром, а может напоминать палочку, поэтому ее поведение при гель-фильтрации (способность проникать в поры геля) будет совершенно различным в этнх двух случаях. Но можно ли составить представление о форме молекулы белка, если пе рассматривать ее (в нативном состоянии ) [c.146]

    В иредиоследнем столбце (см. выше) приведены стоксовы радиусы белков. Легко видеть, что они убывают в том же порядке, как увеличиваются значения К . Для этих радиусов основной закон гель-фильтрации выполняется. Однако простой зависимости между величинами а w М при гель-фильтрации предложить еще нельзя. Необходимо учесть еще один параметр — форму белковой глобулы. При двин ении в свободной жидкости молекулы разной формы, но с одинаковыми стоксовыми радиусами, эквивалентны, по с позици й проникновения в поры геля это не так. [c.148]

    Из этой зависимости следует, что интерполя ,и10 по стоксов > м радиусам молекул, которую можно осуществить, пользуясь методом гель-фильтрации и соответствующей калибровочной кривой, мы не вправе заменять интерполяцией по массам молекул до тех пор, пока не будем уверены в том, что для исследуемой белковой молекулы п всех молекул, использованных для калибровки, выполняется условие одинаковой плотности и одинаковой формы молекул, т. е. равенства отношения ///д. Даже если откинуть фибриллярные белки типа фибриногена, коэффициент формы /// варьирует достаточно заметно (сравним цифры для БСА и цитохрома с), и это тем более существенно, что отноигение /// в формулу (35) входит в третьей степени. [c.149]

    Отсюда следует вывод, что определение молекулярной массы нативиых белков с помощью гель-фильтрации, даже проведенное на уровне описанного выше современного подхода к этой задаче, может дать лишь приближенный результат. Тем более это справедливо в случае весьма распространенного упрощенного способа использования калибровочных кривых, построенных по молекулярным массам маркерных белков без учета их формы. То же относится к определению гель-фильтрацией молекулярных масс нативных нуклеиновых кислот с помощью маркерных НК известной массы, когда в число таких маркеров тРНК включают наряду с рибосомаль-пыми РНК, а нередко и фрагментами ДНК. Говорить же серьезно [c.150]

    И тем не менее, в тех случаях, когда нужно хотя бы приближенно оценить молекулярную массу нативного белка, например состоящего из нескольких субъедпниц или полипептидных цепей, метод гель-фильтрации, даже в упрощенном варианте калибровки по массам, оказывается весьма полезным. Он позволяет выяснить, какое [c.150]

    K(i (выше отмечалось, что стоксов радиус для денатурированных белков иропорциоыалоп A/ " ). Об эффективности разрешения белковых фракций по сравнепию с гель-фильтрацией при низком давлеиии в работе сведений не приводится [Ui, 1979]. [c.156]


Смотреть страницы где упоминается термин Белки, гель-фильтрация: [c.141]    [c.426]    [c.268]    [c.300]    [c.175]    [c.5]    [c.45]    [c.54]    [c.104]    [c.112]    [c.125]    [c.139]    [c.139]    [c.143]    [c.155]    [c.156]    [c.157]    [c.157]    [c.159]    [c.159]    [c.160]    [c.161]   
Аминокислоты, пептиды и белки (1976) -- [ c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Гель-фильтрация

Фильтрация



© 2025 chem21.info Реклама на сайте