Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак двухступенчатая очистка

    На рис. 5.19 изображен один из вариантов схемы синтеза карбамида с двухступенчатой дистилляцией плава и жидкостным рециклом. Газообразный диоксид углерода, предварительно осушенный и очищенный от механических загрязнений, от сероводорода и органических серусодержащих соединений, сжимается в четырехступенчатом компрессоре до 20 МПа и при 95—100 °С направляется в смеситель 6. (При необходимости на одной из ступеней компримирования осуществляется каталитическая очистка СОг от примеси водорода во избежание его накопления в производственном цикле). Сюда же под давлением 20 МПа плунжерным насосом 3 подается жидкий аммиак t л 90 °С), а плунжерным насосом 7 — раствор углеаммонийных солей t 95 °С), в виде которого возвращаются в цикл NH3 и Oj. В результате [c.240]


    Сероорганические соединения, находящиеся в газе, удаляют также поглотителями на основе окиси цинка при температуре 400—500°С. В процессе очистки окись цинка поглотителя превращается в сульфид цинка. В последнее время при производстве аммиака применяют двухступенчатую сероочистку природного газа на первой ступени — каталитическое гидрирование, на второй ступени — поглощение образующегося сероводорода поглотителем на основе окиси цинка. [c.47]

    Сжатие природного газа — двухступенчатая очистка от сероорганических соединений — I риформинг СН4 — II риформинг — конверсия СО на среднетемпературном катализаторе — очистка от СО 2 — метанирование — дожатие газа с помощью центробежного компрессора до конечного давления 170—300 кгс/см — синтез аммиака при этом давлении. [c.18]

    Для улавливания непрореагировавшего аммиака и фтористых соединений после аммонизатора проводят двухступенчатую очистку газов. В- первой ступени аммиак поглощается фосфорной кислотой (или промывной водой, содержащей фосфорную кислоту), после чего во второй ступени очистки происходит абсорбция фтора известковым молоком. Для обеспечения стабильной работы абсорбции на стадии поглощения аммиака фосфорной кислотой количественное соотношение аммиака к фосфорной кислоте в цикле орошения не должно превышать 0,25—0,5. [c.151]

    Сушка нитроаммофоски проводится при температуре tt — — 200° С напряжение объема барабана 6 по испаряемой влаге Ау — 10 кг/(м3-ч). В процессе сушки гранул аммофоса используются газы при / = 350° С, при сушке двойного суперфосфата их температура равна 600° С, напряжение объемов сушилок соответственно равно 20 и 40 кг/(м3-ч). Готовый гранулированный продукт, имеющий влажность 1%, поступает на грохот 12. Отработанные газы по выходе из сушилки подвергаются двухступенчатой очистке в циклоне 7 и мокром скруббере 9. При улавливании пыли и аммиака в скрубберах для орошения их используется исходная фосфорная кислота, которая затем поступает в начальную стадию процесса (на нейтрализацию). [c.349]

    Потребность в углекислом газе машиностроительных производств, имеющих сварочные или сталелитейные цеха, очень большая, поэтому вопрос его утилизации является существенным. Для удаления углекислого газа в производственной практике применяют промывку водой, растворами аммиака, щелочи и др. При высоком содержании углекислого газа можно применять двухступенчатую очистку. Для этого отходящие газы первоначально промываются водой и только после этого остаток углекислоты извлекается с помощью щелочных растворов. [c.204]


    Конверсия аммиака под давлением с рекуперацией энергии хвостовых газов (рис. 223). Воздух засасывается турбокомпрессором 3 из атмосферы через воздухозаборную трубу 1. Перед всасом в турбокомпрессор воздух проходит двухступенчатую очистку от пыли в камере рукавных фильтров 2. В каждой секции фильтров имеется 45 пар рукавов с наружным диаметром 330 мм и длиной 2500 мм. Поверхность одной пары рукавов — 3,2 м . поверхность секции —143 м . Всего на один компрессор устанавливается 180 пар рукавов с общей поверхностью 572 м . Воздух компримируется до 6,5 ата и направляется по воздушному коллектору в аммиачно-воздушный смеситель 11. Турбокомпрессор для сжатия воздуха имеет следующую характеристику  [c.369]

    Однако увеличение потерь катализатора и расхода энергии с повышением давления является серьезным тормозом в развитии этого способа. В связи с этим в последнее время получают распространение схемы, в которых контактное окисление аммиака проводят при более низком давлении (до 4-10 Па), чем окисление оксида азота (до 12-10 Па). Для современных схем характерны большая мощность одной технологической нитки (380— 400 тыс. т/год) и возможно более полное использование энергии отходящих газов и низкопотенциальной теплоты в технологических целях для создания автономных энерготехнологических схем. Комбинированная схема производства разбавленной азотной кислоты под давлением 0,4—1 МПа приведена на рис. 38. Сжатый центробежным компрессором и нагретый воздух (4,2-10 Па, 200°С) поступает в рубашку совмещенного с паровым котлом контактного аппарата. Далее воздух поступает в смеситель, где смешивается с очищенным и разогретым аммиаком. Пройдя тонкую очистку в фильтре, встроенном в контактный аппарат, воздушно-аммиачная смесь поступает на двухступенчатый контакт, состоящий из трех платиновых сеток и слоя неплатинового ката- [c.107]

    На схемах 1 3 изображено производство аммиака парокислородной каталитической конверсией природного газа при атмосферном давлении в шахтных реакторах с последующей двухступенчатой конверсией СО на среднетемпературном железохромовом катализаторе. Дальнейшую переработку конвертированного газа осуществляют по-разному. В каждом конкретном случае выбирают целесообразное сочетание методов очистки газа от СО и СО . [c.9]

    На рис. 118 изображен один из вариантов схе мы синтеза карбамида с двухступенчатой дистилляцией плава и жидкостным рециклом. Газообразный диоксид углерода, предварительно осушенный и очищенный от механических загрязнений, от сероводорода и органических серусодержащих соединений, сжимается в четырехступенчатом компрессоре до 20 МПа и при 95—100 С направляется в смеситель 6. (При необходимости на одной из ступеней компримирования осуществляется каталитическая очистка СО от примеси водорода во избежание его накопления в производственном цикле.) Сюда же под давлением 20 МПа плунжерным насосом 3 подается жидкий аммиак (/ 90°С), а плунжерным насосом 7 — раствор аммонийных солей (/ = 95 °С), в виде которого возвращаются в цикл NH3 и СО2. В результате перемешивания компонентов в смесителе при 175 °С начинается образование карбамата аммония. Затем реакционная смесь [мольное отношение NH3 i СО2 Н2О = (3,8-н 4-4,5) 1 (0,5-ьО,8)] поступает в колонну синтеза 5, в которой при 185 °С и 20 МПа завершается образование карбамата аммония и его разложение до карбамида. [c.235]

    Представляет интерес выделение небольших количеств синильной кислоты из сточных вод производства сульфата аммония из аммиака коксового газа. Они образуются при промывке, ведущейся с целью обезвреживания газов, отходящих из сатураторов поглощения аммиака серной кислотой и содержащих 100—3000 MzjA синильной кислоты и сероводорода и незначительные количества аммиака. Предложена двухступенчатая очистка сточных вод, заключающаяся в раздельной отдувке из них воздухом сероводорода и синильной кислоты. Скорости диффузии H N и H2S из жидкой фазы в газовую почти одинаковы, но коэффициент растворимости синильной кислоты значительно больше. Поэтому сероводород от дувается в 100 раз быстрее и выделяется в первую очередь. От-дувочные газы первой ступени циркулируют в процессе и исполь- [c.474]

    Л-24-9РТ и секций ГО РТ комбинированных установок Л К -6у). В двухступенчатом процессе предусмотрена стадия предварительной гадро-очистки с промежуточной очисткой ВСГ от сероводорода и аммиака. [c.598]

    Для гарантированного отбора вакуумного дистиллята необходимого качества (не менее 60%), применяется двухступенчатая система создания глубокого вакуума в колонне. Принципиальная схема охлаждения потоков вакуумной колонны и схема создания вакуума с помощью паровых эжекторов представлены на рис. 3.2 г. По этой схеме парогазовый продукт с верха К-1 проходит конденсацию в водяном холодильнике Т-16, на вход которого подается ингибитор коррозии. В этом холодильнике часть паров конденсируется, и жидкость из него поступает в барометрическую емкость Е-2. Не-сконденсировавшиеся пары и газы отсасываются паровым эжектором первой ступени Э-1 и подаются в промежуточный конденсатор-холодильник второй ступени Т-17, откуда конденсат собирается в барометрической емкости Е-2. Оставшаяся часть паров и газов разложения отсасывается из Т-17 эжектором второй ступени в конденсатор Т 18, из которого конденсат также сливается в Е-2. Часть газов разложения из Т-18 может рециркулировать на прием эжектора Э-1, основная же часть вместе с жидкостью собирается в Е-2, где происходит отделение кислой воды и нефтепродукта от газов разложения. Последние в целях снижения экологической вредности сжигаются в нагревательных печах вакуумной колонны П-1 и П-2 через специальные горелки. Нефтепродукт, уловленный в Е-2, откачивается насосом Н-13 как некондиционный и может использоваться по разным направлениям. Кислая вода откачивается насосом Н-12 в секцию очистки от сероводорода и аммиака. Описание работы этой секции приведено ниже. [c.102]


    Из верхней части скруббера К-3 пары аммиака после водной промывки охлаждаются в холодильнике Х-2, проходят противоточную очистку 10%-м раствором каустической соды в скруббере К-4. Щелочь циркулирует с помощью насоса Н-11. По мере снижения концентрации отработанная щелочь сбрасывается в канализацию, а пары аммиака по выходе из скруббера направляются в приемный сепаратор С-3 двухступенчатого компрессора ПК-1, сжимаются на первом этапе до 2,9 кгс/см , охлаждаются в водяном холодильнике Х-3, после чего попадают в приемный сепаратор второй ступени С-4, где происходит частичная сепарация выпарившейся жидкости с возвратом ее в скруббер К-3, а сжатые пары аммиака направляются в коагулятор Е-5, где из потока окончательно извлекаются следы нефтепродуктов, которые удаляются в накопитель нефтепродуктов Е-2, а паровая фаза подвергается сжатию до 1,3 МПа, охлаждается до 35°С в водяном конденсаторе-холодильнике Х-4 и поступает на разделение в сепаратор С-5. Из сепаратора С-5 несконденсировавшие газы возвращаются через водяной холодильник Х-5 в качестве рецикла на вход паров аммиака в скруббер водной промывки, а жидкий аммиак из сепаратора-накопителя С-5 насосом Н-12 откачивается в отделение угольной очистки — последний этап удаления нефтепродуктов из жидкого аммиака. [c.134]

    Описан [27] двухступенчатый процесс очистки газа от HjS и органических сернистых соединений. Для удаления HgS на первой ступени процесса используется активированный уголь из буроугольного полукокса. На второй ступени для полного удаления органических сернистых соединений (сероокись углерода, сероуглерод it тиофен) применяют уголь, приготовленный таким же методом из антрацита. Эффективная очистка от органических сернистых соединений на второй ступени процесса возможна только, если газ не содержит даже следов сероводорода и углеводородов. Вероятно, при добавке к насыщенному водяными парами газу аммиака и кислорода в количествах, несколько превышающих стехиометрические, сероокись углерода полностью превращается в сульфат аммония и тиомочевину, сероуглерод — в сульфат и тиосульфат аммония, а тиофен — в тиомочевину. Условия очистки объемная скорость 350—400 ч , температура 27—38° С. Активированный уголь адсорбирует 10 — 12% органических сернистых соединений. Регенерацию осуществляют экстрагированием насыщенного угля конденсатом водяного пара при 79—80° С с последующим пропариванием перегретым до 400 С водяным наром нри избыточном давлении 0,5 ат. [c.187]

    Нитрификация-денитрификация по двухступенчатой схеме, которой предшествует биологическая очистка, обеспечивает при расчетных расходах сточных вод снижение неорганического азота на 90% и общего азота на 80—95%. Преимущества биологического удаления азота заключаются в том, что в результате процесса нитрификации может быть достигнута требуемая степень удаления аммиака (если возникает необходимость, впоследствии проводят денитрификацию). Кроме того, такую систему можно приспособить в качестве дополнения к существующей системе биологической очистки, [c.373]

    В Советском Союзе разработан процесс гидродеароматизации при умеренных давлении и температуре на цеолитсодержащем катализаторе [81] в одно- и двухступенчатом варианте. В качестве сырья одноступенчатого процесса используют прямогонные керосиновые фракции, выкипающие в пределах 130— 240 и 160—280 °С. Платиновый цеолитсодержащий катализатор позволяет перерабатывать сырье без его предварительной гидроочистки с содержанием серы<0,2% н азота<0,001%. Технологическое оформление одноступенчатого варианта близко к существующему процессу гидроочистки реактивных топлив, В двухступенчатом процессе предусмотрена стадия предварительной гидроочистки с промежуточной очисткой циркулирующего газа от сероводорода и аммиака. [c.37]

    На рис. IV-12 изображена схема блока разделения коксового газа производительностью 32 000 м 1ч. На схеме не показаны отделения компрессии коксового газа и его очистки от СОг, а также двухступенчатая аммиачная холодильная установка, работающая при температурах испарения аммиака —40 и —5° С. [c.112]

    Установка двухступенчатой паровоздушной каталитической конверсии совмещена с аппаратами для двухступенчатой конверсии окиси углерода, очистки газа от СО и СО и синтеза аммиака в единый агрегат большой мощности, имеющий сложную взаимосвязь между отдельными стадиями технологической схемы. [c.59]

    В старых схемах производства аммиака и водорода, где применяются двухступенчатая конверсия СО на среднетемпературном катализаторе (без НТК) содержание оксида углерода в конвертированном газе составляет 3,0-4,5% (об,), а после очистки от диоксида углерода достигает 4,0-5,0% (об.). [c.36]

    Кроме того, при двухступенчатой очистке можно использовать низкотемпературный катализатор на второй ступени конверсии СО с последующим удалением остатков СО из конвертированного газа путем метанирования [75]1 Для агрегата синтеза аммиака мощностью 900 т/сут на основе газов, полученных газификацией угля по методу Копперса — Тотцека, применение средне- и низкотемпературной конверсии СО, а также метанирования, связано с большими капитальными затратами, чем в случае применения среднетемпера -турной конверсии СО и промывки газа жидким азотом. Энергоматериальные затраты в обеих схемах одинаковы, не считая дополнительного расхода катализаторов НТК и метанирования [76]. [c.296]

    Следует отметить, что мембранная установка по извлечению водорода из продувочных газов синтеза аммиака становится неотъемлемой частью современнного энерготехнологического агрегата большой единичной мощности и дает существенную прибыль. Так, за 1981 г. только на установках Призм извлекали около 1 млрд. м водорда в год [38]. По данным Монсанто [39], себестоимость полученного с помощью мембранной установки технического водорода составляет 0,028 долл/м , в то время как рыночная цена этого продукта 0,143—0,214 долл/м . Поэтому, например, для установки двухступенчатой очистки производительностью (ом. табл, 8.4) по техническому водороду 2084 м7 Ч, годовой экономический эффект составляет около [c.279]

    На стадии конверсии предполагают использовать двухступенчатое окисление аммиака на неплатиновом катализаторе НК-2У. На стадии селективной очистки от оксидов азота применяется алюмомедьцинковый катализатор АМЦ-10 (ТУ 113-03-28-02-84). Загрузка 14 т, время пробега 3 года. [c.87]

    Обычно применяют двухступенчатую очистку аммиака от масла и оксидов железа на первой ступени аммиак испаряют в дистилляционной колонне или осуществляют непрерывную (до 7—10%) продувку жидкого аммиака из испарителя. В качестве второй ступени используют фильтры из однонаправленного стекловолокна. Фильтрующий пакет волокна заключают в оболочку из стеклосеток ССФ-4 и ССФ-3. Плотность фильтрующего материала [c.50]

    За период, прошедшии со времени выхода в свет первого издания книги (1969 г.), в промышленности производства аммиака произошли существенные изменения. Основным методом получения синтез-газа в настоящее время является трубчатая конверсия природного газа с предварительной тонкой двухступенчатой очисткой от сернистых соединений, с последующей низкотемпературной конверсией окиси углерода, тонкой абсорбционной очисткой от двуокиси углерода и метанированием кислородсодержащих примесей. [c.7]

    На рис. VI1-40 показана технологическая схема сушки при получении сложных гранулированных удобрений на базе аммофоса. Фосфорная кислота (30% Р2О5) подается в нейтрализатор /, куда поступает газообразный аммиак. Образующаяся пульпа при влажности 40% переливается в питательный бачок 3, откуда насосом-дозатором 4 подается на диск распылительной сушилки 5. В качестве агента сушки используются топочные газы при начальной температуре t = 600—650° С. Отработанные газы (/2 = = 115° С) проходят двухступенчатую очистку в циклонах 6 и мокром скруббере 9, орошаемом исходной фосфорной кислотой. Скруббер можно орошать также водой или пульпой, если ее начальная влажность более 50%. [c.349]

    Остатки симазина и атразина в зернах кукурузы определяли путем извлечения гербицидов хлороформом в присутствии водного аммиака и очистки растительного экстракта на двухступенчатой колонке, заполненной целитом 545. После окончательной очистки веществ на колонке с флоризилом гербициды идентифицировали методом хроматографии на бумаге с применением в качестве неподвижной фазы 15%-ного раствора СНоОН в петролейном эфире и подвижной фазы—смеси СНдСС .,, СН..ОН и 2,2,4-три-метилпентана. В качестве проявителя применяли азотносеребряный реагент, смешанный с феноксиэтанолом. Этим же автором были определены остатки монурона и диурона . [c.98]

    Например, известны случаи, когда неучтенный хлор в углеводородном сырье вызывал коррозию реакционных труб нечи парового риформинга и другого оборудования, отравлял некоторые катализаторы и загрязнял получаемый продукт. Аналогичные результаты получались при использовании загрязненного хлором воздуха в качестве сырья для производства аммиака по схеме с двухступенчатым риформингом углеводородного газа и нефти. Появление в природном газе ранее отсутствовавших органических соединений серы привела к снижению активности катализатора парокислородного риформинга и к пэме-нению его температурного режима. В результате этих факторов в синтез-газе появились примеси ацетилена, которые на стадии очистки медно-аммиачным раствором в установке получения водорода образовали при нарушении режима регенерации осадок взрывчатой ацетиленовой меди. [c.24]

    Атмосферный воздух, очищенный от пыли в фильтре 1, сжимается до 0,42 МПа в воздушном компрессоре 2 и делится на два потока. Один подается в контактный аппарат 3, другой через подогреватель аммиака в продувочную колонну5. Газообразный аммиак из испарителя 6 очищается в фильтре 7 и нагревается в подогревателе 4 горячим воздухом до 80—120°С. Очищенный аммиак и воздух поступают в смесительную камеру 8 контактного аппарата 3. Образовавшаяся АмВС, содержащая около 0,11 об. дол. аммиака, проходит тонкую очистку в керамическом фильтре, встроенном в контактный аппарат, и поступает на двухступенчатый катализатор, состоящий из платиноидных сеток и слоя окисного катализатора. Образовавшиеся нитрозные газы проходят котел-утилизатор 9, размещенный в нижней части контактного аппарата, и поступают последовательно сначала в экономайзер 10 и затем в холодильник 11, где охлаждаются до 55°С. При охлаждении нитрозных газов происходит конденсация паров воды с образованием азотной кислоты различной концентрации, которая подается в абсорбционную колонну 12. Нитрозные газы сжимаются в нитрозном компрессоре 13 до 0,108—0,11 МПа, разогреваясь при этом до 230°С, охлаждаются в холодильнике I4, являющимся одновременно подогревателем отходящих газов, до 150°С и холодильнике-конденсаторе 15 до 40—60°С, после чего подаются в абсорбционную колонну 12, в которую сверху поступает вода (паровой конденсат). Образовавшаяся 58—60% -ная кислота из нижней части колонны направляется в продувочную колонну 5, где освобождается от растворенных в ней оксидов азота, и оттуда в [c.229]

    На вторичный реформинг подается воздуха на 30-50% больше, чем это требуется для получения азотоводородной смеси в соотношении и =3 1, необходимом для синтеза аммиака. Температура на выходе из шахтного реактора около 900°С. Полученный газ проходит двухступенчатую конверсию окиси углерода в аппаратах 6 и 7 и поступает в абсорбер 8 для очистки от СО2 раствором карбоната калия или органическими растворителями. Затем газ подогревается до 320°С и поступает в метанатор 10. После охлаждения водой и хладоагентом газовый поток проходит через осушители II, заполненные цеолитами. Затем газ, состоящий из 60-70%, 30 40, 2-3% и 0,5% [c.257]

    Для очистки конденсатов объем 25— 30 м /ч, содержащих более 10 г/л сероводорода а аммиака, можно использовать метод двухступенчатой ректификации. Продуктами фракционнровандя являются сероводород, аммиак и вода. При ректификации концентрация сероводорода я аммиака в очищенном конденсате снижается соответственно до 10—50 и 50—100 мг/л (при этом полнота удаления аммиака составляет 99,5%, сероводорода — 99,9% и фенолов—30 40%). [c.158]

    Газообразные продукты пиролиза поступают в секцию очистки. Здесь газ сжимается до 23,7 ати двухступенчатым компрессором с охлаждением между ступенями сжатия. Затем газ ожижают охлаждением до 7° в теплообменнике. Охлаждение производят водой, предварительно охлажденной испарением до заданной температуры, или при помощи холодильного цикла с использованием аммиака или других сжатых газов в качестве хладоагента. [c.115]

    Для улавливания аммиака и фтора из отходящих газов после аммонизатора-гранулятора и нейтрализатора применяют двухступенчатую схему очистки. Отходящие газы из аммонизатора-гранулятора при температуре 90—100°С смешиваются с газами, выходящими из нейтрализатора и предварительно прошедшими поверхностный конденсатор, и поступают на первую ступень абсорбции. Здесь используют абсорбер с подвижной насадкой, уложенной в два слоя (диаметр шаров 40 мм, высота каждого слоя насадки 300 мм). Орошение кислыми растворами фосфатов аммония проводят по замкнутому циклу. Для поддержания требуемого состава пульпы (мольное отношение NHs НзР04= 1,25) в бак циркулирующего раствора кроме фосфорной кислоты подают конденсат, образующийся при конденсации водяных паров и газов из нейтрализаторов. Полученная при абсорбции пульпа, содержащая 20% Р2О5, поступает на нейтрализацию. [c.39]

    Азотное производство. На заводах азотной промышленности применяют аммиачные холодильные установки с компрессорами двухступенчатого сжатия для температур кипения от —45 до —53° С в цикле разделения коксового или водяного газа для получения азотноюдородной смеси и при очистке газа от окиси углерода и метана. Из азотноводородной смеси при высоких температурах и давлениях получают затем синтетический аммиак. Компрессоры служат для сжатия газообразного аммиака, поступающего из газгольдера, а испарители — для кипения в них жидкого аммиака и получения холода с последующим использованием холодных паров аммиака в цехах переработки. [c.388]

    Первое издание учебного пособия было выпущено в 1966 г. Во втором издании авторы попытались отразить то новое в технологии связанпого азота, что возникло в последние годы в результате научно-технического прогресса двухступенчатую конверсию природного газа под давлением применение низкотемпературных катализаторов для второй ступени конверсии окиси углерода глубокое использование тепла химических реакций для получения пара высоких параметров внедрение крупных энерго-технологических агрегатов для производства аммиака (на 1000—1500 т/сут) применение турбокомпрессоров для сжатия азотоводородной смеси и мощных агрегатов для производства азотной кислоты с повышенным давлением в процессах окисления аншиака и абсорбции окислов азота использование методов каталитической очистки отходящих газов от окислов азота для предохранения воздушной среды от загрязнений. [c.9]


Смотреть страницы где упоминается термин Аммиак двухступенчатая очистка: [c.67]    [c.372]    [c.222]    [c.15]    [c.212]    [c.242]    [c.237]    [c.212]    [c.213]    [c.4]    [c.150]    [c.336]    [c.201]   
Справочник азотчика (1987) -- [ c.50 , c.51 ]




ПОИСК







© 2024 chem21.info Реклама на сайте