Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны кислот

    С=0 альдегидов, кетонов, кислот [c.146]

    Повышение давления способствует образованию в основном первичных продуктов окисления (спиртов), при низком же давлении получаются продукты более глубокого окисления (кетоны, кислоты, окись и двуокись углерода). [c.141]

    Алифатические углеводороды окисляются тем легче, чем больше углеродных атомов в молекуле, так как окисление легче осуществить в этом случае при повышенных давлениях. Образуются различные продукты (альдегиды, спирты, кетоны, кислоты), причем при высоких давлениях получают спирты, имеющие на один или два атома углерода меньше, чем в исходном сырье, при низких — спирты и кислоты с количеством углеродных атомов намного меньшим (низшие спирты). При относительно низких давлениях (20—30 ат) окисление проводят обычно при больших соотношениях воздуха и углеводорода (3 1—5 I), а вся смесь разбавляется водяным паром (соотношение смеси и пара 1 3—1 6). При высоких давлениях (100—300 ат) окисление проводят в большинстве случаев при малом соотношении воздуха и углеводорода (1 1—1 10). [c.144]


    Каталитическое восстановление окиси углерода в присутствии железа стало известным в 1912 г. были получены метиловый и высшие спирты, альдегиды, кетоны, кислоты, сложные эфиры и небольшое количество жидких углеводородов. [c.248]

    Характерной тенденцией в развитии промышленности нефтехимического синтеза является все большее и большее вовлечение в химическую переработку углеводородов природных и попутных нефтяных газов. Природный и попутный газы являются, нанример, сырьем для производства метанола, формальдегида, ацетальдегида, уксусной кислоты, ацетона и многих других химических соединений. На базе природных и попутных газов получают также синтез-газ, широко используемый для последующего синтеза ценных кислородсодержащих соединений — спиртов, альдегидов, кетонов, кислот. Значительных размеров достигло производство на основе природного и попутного газов синтетического аммиака и хлорпроизводных углеводородов. Природный и попутный газы служат сырьем для получения олефиновых углеводородов, и в первую очередь этилена и пропилена. [c.3]

    Неполное низкотемпературное окисление углеводородов природных и попутных газов является одним из наиболее перспективных методов получения продуктов органического синтеза, так как дает возможность превращать дешевое сырье в ценные кислородсодержащие соединения — спирты, альдегиды, кетоны. кислоты, ангидриды. [c.82]

    В США был разработан новый вариант этого метода, позволяющий получить из СО и Н2 сложную смесь химических соеди пений, в которую входят спирты, альдегиды, кетоны, кислоты и другие соединения. Указанный метод пока не нашел еще промышленного применения, но в этом направлении продолжаются усиленные научные исследования. [c.113]

    Значения 2 приведены в табл. 2.2. С появлением в углеводороде продуктов окисления — спиртов, кетонов, кислот — возникают новые реакции генерирования радикалов. [c.40]

    Б) соединения, содержащие один характерный атом или группу атомов спирты, эфиры, простые альдегиды, кетоны, кислоты, эфиры сложные, амины, нитрилы, хлоро-, бромо-, нитропроизводные и т. д.  [c.15]

    Хорошо растворим в ароматических углеводородах, спиртах, кетонах, кислотах Частично в нефти. Плохо в бензине. Нерастворим в воде Растворим в органических растворителях и эмульгируется в воде [c.295]

    Условия сопряженного окисления пропилена с карбонильными соединениями можно варьировать в очень широких пределах температуру — от 50 до 400 С, давление — от атмосферного до 35 ЛШа. В качестве растворителей используют углеводороды, кетоны, кислоты, эфиры. Катализаторами процесса служат соли кобальта, никеля, марганца, меди, магния, ртути. [c.198]


    Реакции развития цепи весьма многообразны и сложны. В них кроме молекул исходного вещества могут участвовать и кислородсодержащие продукты спирты, фенолы, альдегиды и кетоны, кислоты и др. Наиболее важным являются реакции вырожденного разветвления, благодаря которым окисление самоускоряется. [c.174]

    При жидкофазном автокаталитическом окислении нормальных алканов получаются спирты, кетоны, кислоты. При помощи катализаторов удается увеличивать направленность реакции и, следовательно, повышать выход того или иного продукта окисления (табл. 53). [c.199]

    Таким образом, гидроперекиси, подвергаясь термическому или окислительному распаду, превращаются в ряд соединений, к которым относятся спирты, альдегиды, кетоны, кислоты, окси-и кетокислоты, фенолы, вода, СО, Oj и Hj. Спирты, альдегиды и кетоны были обнаружены и выделены также и из продуктов окисления нефтяных фракций. [c.264]

    Образующиеся одноатомные гидроперекиси способны под действием температуры и молекулярного кислорода распадаться с образованием спиртов, альдегидов, кетонов, кислот, воды. Одноатомные гидроперекиси могут присоединять молекулярный кислород, в результате чего образуются двухатомные гидроперекиси, которые разлагаются с образованием кислот, кетокислот, альдегидов и воды. Это разложение сопровождается разрушением молекулы углеводорода по связям С —С. В результате получаются высокомолекулярные и низкомолекулярные кислоты. [c.266]

    В условиях, приближающихся к воспламенению углеводородов, понижается содержание альдегидов, кетонов, кислот и спиртов и повышается образование СО и СО2. [c.157]

    Нафтеновые и парафиновые углеводороды начинают реагировать с кислородом задолго до самовоспламенения с образованием, помимо СО и СОг, большого количества промежуточных кислородсодержащих продуктов распада альдегидов, кетонов, кислот, спиртов. [c.163]

    Фишер и Тропш разработали процесс синтол, который осуществляли при 400-500 С и 10-15 МПа в присутствии подщелоченного оксида двухвалентного железа. Продукт реакции - смесь спиртов, альдегидов, кетонов, кислот и других органических соединений. [c.122]

    Как правило, метан и его гомологи реагируют с кислородом в газовой фазе при температуре от 250° и выше, образуя наиболее устойчивые из всех возможных продуктов окисления, а именно спирты, альдегиды или кетоны, кислоты и окиси. В случае высших углеводородов всегда происходит разрыв углеродной цепи, и часто кислородсодержащие соединения с тем же числом атомов углерода, что и исходный углеводород, составляют небольшую долю общего количества полезных продуктов окисления. Из всех углеводородов наиболее трудно окисляется метан. При последовательном переходе от метана к бутану легкость окисления увеличивается. Давление благоприятствует увеличению выхода и несколько ограничивает степень окисления. Перед началом реакции обычно наблюдается индукционный период. Твердые катализаторы и присутствие водяного пара не оказывают большого влияния на течение процесса. В этом отношении следует отметить аналогию с парофазным нитрованием (гл. 6), причем важно подчеркнуть, что нитрование азотной кислотой всегда сопровождается окислением, протекающим в значительной степени. [c.69]

    В Германии твердый парафин окисляли в больших масштабах. Процесс окисления, продолжавшийся 15—30 час., проводили в алюминиевых реакторах при 130° (110—140°) и 10 ama в присутствии приблизительно 0,1% перманганата в качестве катализатора [15], Чтобы получить кислоты с нужным молекулярным весом, окислению подвергали парафины с 20—30 атомами углерода. Отходящие газы, содержавшие 10—15% кислорода, увлекали с собой все кислоты с 1—5 атомами углерода и часть кислот с 6—8 атомами эти газы промывали водой и из водного раствора выделяли кислоты. Нелетучие продукты окисления состояли из смеси неизменного парафина, спиртов, кетонов, кислот, окси- и кетокислот, высокомолекулярных сложных эфиров и лактонов. При омылении щелочью под давлением при 150—170° эфиры и лактоны гидролизовались в результате такой обработки получалось два слоя. [c.74]

    Спирты, кетоны, кислоты и некоторые другие соединенин  [c.573]

    Т.А. Ботнева, Я.А. Терской, Н.С. Шулова, изучавшие карбонилсодержащие соединения, главным образом связанные со смолисто-асфальтено-выми компонентами нефти, на примере окисленных нефтей Прикаспийской впадины установили различия в составе этих соединений. Соотношение в нефтях содержания кетонов и кислот не зависит от степени окислен-ности нефти и суммарного содержания карбонильных и кислородсодержащих соединений, различия в их распределении характерны для нефтей разных стратиграфических комплексов. Так, в нефтях, залегающих в палеозойских отложениях, величина отношения кетоны/кислоты изменяется от О до 0,10, а в мезозойских отложениях - от 0,36 до 0,83. Эти пока немногочисленные данные позволяют предположить, что нефть наследует такую характеристику смол, как состав кислородсодержащих соединений. [c.33]


    Многие классы органических соединений образуют комплеАсы, например гомологические ряды кетонов, кислот, эфиров, галоидуглеводородов, меркаптанов и сложных эфиров. Насыщенные и ненасыщенные структуры будут образовывать комплексы при наличии достаточно длинной цепи. [c.206]

    Карбонильный кислород в кетонах, кислотах и сложных эфирах не только не арепятствует образованию комплексов, но, по-видимому, облегчает комплексообразование, так как окисленные соединения с более короткими углеродными цепями дают комплексы. Ацетон с тремя углеродными атомами в прямой цепи, масляная кислота с четырьмя углеродными атомами и их высшие гомологи образуют комплексы с мочевиной. [c.206]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Разрыв связи С—С при окислении может происходить в любой точке молекулы, поэтому в оксидате содержатся продукты самого различного молекулярного веса. В оксидате были обнаружены и идентифицированы следующие летучие жирные кислоты муравьиная, уксусная, пропионовая, масляная,валерьяновая, капроновая и далее вплоть до 10 углеродных атомов в цепи. Водонерастворимые нелетучие кислоты представляют собой очень сложную < месь. Помимо жирных кислот, оксидат может содержать окси-кпслоты, лактоны, ангидриды, альдегидо-кислоты, кетоно-кислоты, альдегиды, спирты и простые эфиры [328—336]. Твердые кислоты более чем на 80% состоят из предельных соединений с молекулярным весом от 145 до 300 и на 50% — из соединений с числом углеродных атомов не выше 14 [339]. Сообщалось об идентификации миристиновой, пальмитиновой, стеариновой, арахиновой, лигно-цериновой и изоиальмитиновой кислот [340]. Образование двухосновных кислот незначительно, хотя янтарную кислоту удалось выделить из оксидата [341, 342]. Неокисленный остаток по впеш- [c.587]

    Рассмотрим термодинамику прямого Ькисления углеводородов (кислородом или воздухом) и неполного окисления (с получением гидроперекисей, перекисей, эпоксидов, спиртов, альдегидов, кетонов, кислот и их ангидридов и т. д.). Большинство этих реакций экзо-термично. АН° имеет большую отрицательную величину, а А5 сравнительно невелико, поэтому изобарный иотенциал имеет отри цательные значения в широком температурном интервале (см., например, рис. 1). Реакции термодинамически осуществимы. [c.131]

    Наиболее подробно изучено каталитическое действие я-аллильных комплексов никеля. Их стереоспецифичность определяется природой галогена, связанного с никелем иодиды приводят к транс-структурам, а хлориды способствуют образованию цис-звеньев [48]. Активность п-аллилникельгалогенидов резко возрастает при введении в систему неорганических или органических электроноакцепторов [49, 50]. Катализаторы, образующиеся при взаимодействии п-аллильных комплексов никеля с такими соединениями, как галогензамещенные хиноны, альдегиды, кетоны, кислоты и их соли, обладают высокой каталитической активностью [c.183]

    Различные авт01)ы изучали реакции атомов F, G1, Вг и J с большим числом веществ. Сюда относятся водород, различные углеводороды, алкилгалогени-ды, альдегиды, кетоны, кислоты (см. [67]). [c.33]

    На практике наиболее часто приходится встречаты я с жидкими растворами. В жидком растворе обычно различают растворитель и растворенное вещество, хотя с термодинамической точки зрения все составляющие раствора равноценны. Под растворителем понимают то вещество, которое имеется в растворе в большем количестве. Остальные компоненты, присутствующие в растворе в меньших количествах, называются растворенными веществами. Такое деление на растворитель и растворенное вещество крайне условно, особенно если количества компонентов в растворе соизмеримы. Для образования жидкого раствора в качестве растворителя применяют воду или различные органические жидкости (спирты, кетоны, кислоты, эфиры, углеводороды). Нередко в качестве растворителей используют жидкий аммиак, серную кислоту и др. [c.339]

    Механизм разветвления цепей на глубоких стадиях реакции сложнее, так как продукты окисления iспирты, кетоны, кислоты) принимают участие в образовании радикалов через стадию промежуточных комплексов  [c.271]

    На глубоких стадиях окисления накаг ливаются спирты, кетоны, кислоты. Они взаимодействуют с катализатором и являются дополнительным источником свободных радикалов (разветвление цепи)  [c.273]

    Окислители в органической х 4мии. Окисление как метод получения кислородсодержащих соединений - спиртов, альдегидов, кетонов, кислот. Особенности окисления в различных средах. [c.197]

    В будущем возможно более широкое использование метанола в органическом синтезе и химической промышленности в целом, а также применение его в качестве топлива, источника водорода, в микробиологическом синтезе, для очистки сточных вод и других целей. В химической промышленности большое значение имеет синтез высших спиртов, алвдегидов, кетонов, кислот и углеводородов на основе водорода и окиси углерода. Производство этих продуктов потребляет более 5% водорода и в дальнейшем доля водорода для них будет возрастать.Таким образом, наряду с синтезом аммиака синтез органических продуктов является крупнейшим потребителем водорода. [c.5]

    Очень интересные данные были получены при автоокислении изонропил- и втор.бутилксилолов [265, 266]. Так, например, было установлено, что при автоокислении 4-изопронил-о-ксилола, 3-изопронил-о-ксилола, 2-изопропил-и-ксилола, 4-изопропил-л -кси-лола наряду с обычными продуктами (спиртами, кетонами, кислотами) образуются также "Лактоны — производные фталида. [c.283]

    Карбонильный кислород в кетонах, кислотах и сложных эфирах в известной степени облегчает комплексообразование, поскольку окисленные соединения образуют комплекс при наличии менее длинной цепи, чем неокисленные. У карбоновых кислот способность образовывать комплексы проявляется, начиная с масляной кислоты, у кетонов — с ацетона, у спиртов — с гексанола. [c.21]


Смотреть страницы где упоминается термин Кетоны кислот: [c.203]    [c.551]    [c.585]    [c.454]    [c.492]    [c.61]    [c.17]    [c.59]    [c.15]    [c.128]    [c.371]    [c.119]    [c.199]    [c.294]    [c.213]   
Препаративная органическая химия Реакции и синтезы в практикуме и научно исследовательской (1999) -- [ c.13 ]

Принципы органического синтеза (1962) -- [ c.227 ]




ПОИСК







© 2025 chem21.info Реклама на сайте