Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез аммиака и органических

    В химической промышленности железо используют как катализатор (в синтезе аммиака, органических сое- , динений). [c.284]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]


    Химическая термодинамика особенно быстро развивалась в XX в. На ее основе проведены фундаментальные исследования по синтезу аммиака, метанола и получения ряда органических веществ, имеющих большое народнохозяйственное значение, синтезированы искусственные алмазы и др. Были разработаны более совершенные установки для определения тепловых эффектов реакций и теплоемкостей, которые позволили значительно снизить экспериментальные ошибки, что в свою очередь, дало возможность с большей точностью вычислять константы равновесия химических процессов. В этот же период времени были предложены более совершенные методы расчета химического равновесия как при низких, так и при высоких давлениях. Проводились и в настоящее время проводятся обширные термодинамические исследования в области растворов. Особую важность приобрели исследования химических процессов при экстремальных условиях. [c.181]

    Для синтеза аммиака и процессов гидрирования органических соединений необходим водород, значительную часть которого производят конверсией природного газа (в основном метана) с водяным паром [38, 39]. Первую стадию этого процесса осуществляют на никелевом катализаторе с получением синтез-газа, содержащего водород и окись углерода. Вторую стадию — конверсию окиси углерода с водяным паром — проводят на окислах железа и хрома. Ныне открыты катализаторы, содержащие окислы меди и медные шпинели, которые много активнее железохромовых и позволят полнее использовать СО в конверсии с водяным паром. [c.10]

    К реакциям, протекающим по окислительно-восстановительному механизму, относятся такие, как гидрирование олефинов, ароматических соединений и других соединений с кратными связями, СО и СО2 до метана, дегидрирование органических соединений, синтез аммиака, синтез углеводородов и спиртов из СО и водорода, окисление углеводородов, а также сернистого ангидрида и аммиака и т. д. Все эти процессы являются гомолитическими [4], при которых промежуточное взаимодействие с катализатором включает гомолитический разрыв двухэлектронных связей в реагирующих веществах и образование связей с катализатором с использованием неспаренных электронов последнего. [c.26]

    Газовые реакции на твердом катализаторе распространены в химической промышленности. В частности, производство азотных удобрений было бы невозможным без каталитических реакций конверсии метана и моноксида углерода, синтеза аммиака и окисления его до моноксида азота. Серную кислоту, необходимую для производства фосфорных удобрений, в настоящее время получают почти исключительно контактным способом, основанным на каталитическом окислении сернистого ангидрида в серный. Примеры таких процессов в нефтехимических и органических производствах — каталитический крекинг и риформинг нефтепродуктов, а также синтез метанола и других спиртов и углеводородов. Реакторы для таких процессов обычно называют контактными аппаратами или колоннами синтеза. [c.285]


    Одним из таких полупродуктов является водород, который образуется в процессе крекинга и пиролиза нефти и углеводородных газов. Водород в свою очередь служит исходным веществом для производства аммиака, в молекуле которого на один атом азота приходится три атома водорода. Из аммиака получают углекислый аммоний, сульфат аммония, азотную кислоту, аммиачную селитру и ряд других продуктов, широко используемых в качестве удобрений и в химической промышленности для производства ряда веществ. Кроме того, из аммиака получается мочевина, представляющая собой органическое вещество, содержащее азот. В последнее время мочевина стала широко применяться в качестве удобрения, добавок в корм скоту, а также для производства некоторых пластмасс. Водород, который является основой синтеза аммиака, может получаться разными путями — при крекинге и пиролизе нефти и газа, при обработке кокса и угля водой при высокой температуре, при электролизе воды и т. д. Наиболее выгодным оказалось получение водорода из углеводородного газа. [c.356]

    Широко используются непрерывные процессы в органических и неорганических производствах (синтез этилового спирта, фенола, ацетона, производных этилена, пропилена синтез аммиака производство серной кислоты и др.). К крупнотоннажным производствам относятся азотное, хлорное, основной химии, химических волокон, пластических масс, органического синтеза, горно-химическое и др. Объем крупнотоннажной продукции составляет более 75 % общего выпуска продукции. [c.14]

    Из нефти вырабатывают около 60% всех органических химикалий. Водяной газ и водород для синтеза аммиака также получают в значительном масштабе из природного газа или нефти. Правда, несмотря на это, для химических целей используется все еще менее 1 % добываемой нефти. Однако недалеко то время, когда все пластмассы и синтетические волокна будут получать из продуктов химической переработки нефти. [c.84]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]

    Поэтому водород применяют в металлургии для восстановления некоторых цветных металлов из их оксидов. Главное применение водород находит в химической промышленности для синтеза хлороводорода, для синтеза аммиака, идущего в свою очередь на производство азотной кислоты и азотных удобрений, для получения метилового спирта (см. разд. 29.10) и других органических соединений. Он используется для гидрогенизации жиров (см. разд. 29.14), угля и нефти. При гидрогенизации угля и нефти бедные водородом низкосортные виды топлива превращаются в высококачественные. [c.473]

    Окись углерода является первоклассным сырьем для синтеза многих органических продуктов метанола, муравьиной кислоты, синтетического топлива, фосгена и т. п. В настоящее время окись углерода в виде генераторного, водяного и смешанного газов используется главным образом в качестве топлива, а также для получения водорода для азото-водородной смеси, применяемой при синтезе аммиака. Водород образуется при пропускании указанных газов в смеси с водяным паром над нагретым катализатором  [c.480]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]


    Между элементами вертикальных столбцов проявляются отдельные черты и более близкого сходства. Например, для всех членов ряда Со, НЬ, 1г (в противоположность остальным элементам группы) характерно образование аммиакатов типа [Э(ЫНз)б]Хз. Члены ряда Ре, Ни, Оз являются особенно активными катализаторами при синтезе аммиака из элементов, а N1, Рс1 и Р1 — при реакциях присоединения водорода к органическим соединениям. Для Ре, Ки и Оз кислородные соединения характернее сернистых, тогда как в ряду N1, Рё, Р1 наблюдается обратное. В этом, равно как и в некоторых других отношениях. Ре, Ки и Оз похожи на Мп, Тс и Ке, а N1, Р(1 и Р1—на Си, Ад и Аи. По своим химическим свойствам элементы триад являются таким образом переходными между примыкающими к ним элементами подгруппы марганца, с одной стороны, и подгруппы меди — с другой.  [c.453]

    Применение. Водород широко используется в химической промышленности, главным образом для синтеза аммиака, хлороводорода и многих органических веществ. В металлургии водород применяется как восстановитель при получении железа, молибдена, вольфрама и других металлов. [c.110]

    В годы первой, второй и начала третьей пятилеток наряду с развитием существовавших производств появились новые отрасли химической промышленности. Триумфом советской химии был пуск в 1932 г. первого в мире завода синтетического каучука по способу С. В. Лебедева. Промышленное производство синтетического каучука было освоено за рубежом много позднее в Германии в 1937 г., а в США в 1942 г. В годы первых пятилеток создана промышленность органического синтеза, пластических масс, искусственного волокна, сложнейших фармацевтических препаратов и химически чистых реактивов. Построены заводы связанного азота с полным и сложным циклом от синтеза аммиака до азотнокислых солей (нитратов). Заново созданы также современные нефтеперерабатывающая, лесохимическая и гидролизная отрасли промышленности. [c.9]

    Реакция (11.1) является основной во многих промышленных процессах, рассмотренных в последующих главах учебника, например для окисления диоксида серы, абсорбции триоксида серы, синтезах аммиака, хлороводорода, спиртов, высокомолекулярных соединений и во многих других органических и неорганических синтезах. Поэтому она будет рассматриваться как модельная, [c.39]

    В современных схемах синтеза аммиака газ поступает на очистку под давлением до 2,94 МПа (30 кгс/см ). Б этих условиях эффективны процессы физической абсорбции органическими растворителями. В настоящее время такие процессы используются главным образом для очистки природного газа с высоким содержанием двуокиси углерода и сероводорода, однако они могут быть применены и для очистки конвертированного газа. [c.263]

    Над составлением Справочника азотчика работал большой коллектив специалистов — ведущих сотрудников Государственного научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза (ГИАП). Авторы стремились ознакомить читателей с современными, наиболее прогрессивными способами получения и очистки технологических газов, системами синтеза аммиака и метанола, процессами переработки аммиака в азотную кислоту и получения солей, показать наиболее целесообразное аппаратурное оформление процессов, осветить вопросы выбора типового технологического и энергетического оборудования, обобщить данные по технике безопасности. [c.8]

    Глава XVII — Реакции синтеза аммиака, синильной кислоты, аминов, нитрилов и некоторых других азотсодержащих органических соединений  [c.4]

    Примене ние. Наибольшее количество азота идет на синтез аммиака, из которого затем получают HNO3 и огромное количество других химических продуктов. Ежегодно в СССР производят миллионы тонн азотных удобрений (NH4NO3, мочевина, аммиачная вода и др.). Очень много NH3 и HNO3 расходуется на синтез различных органических веществ. [c.411]

    Ре, Со, N1 и их соединения широко используют в качестве катализаторов. Губчатое железо с добавками—катализатор синтеза аммиака. Высокодисперсный никель (никель Ренея)—очень активный катализатор гидрирования органических соединений, в частности жиров. Никель Ренея готовят, действуя раствором щелочи на интерметаллид Ы1А1, при этом алюминий образует растворимый алюминат, а никель остается в виде мельчайших частиц. Этот катализатор хранят под слоем органической жидкости, в сухом состоянии он мгновенно окисляется кислородом воздуха. Со и Мп входят в состав катализатора, добавляемого к масляным краскам для ускорения их высыхания . [c.569]

    Железохромовые контактные массы используют для конверсии окиси углерода с водяным паром. Конверсия СО является составной частью процесса производства водорода для синтеза аммиака и гидриройания органических соединений. Различают катализаторы по содержанию СггОз (от 5 до 15 вес. %),, наличию других добавок (окислы магния, алюминия, цинка, калия) й способу приготовления [63, 64]. [c.121]

    В химической промышленности водород применяют для производства азотоводородной смеси (синтез аммиака), синтетической соляной кислоты, синтез-газа и разнообразных продуктов на его основе (метанол и др.), в процессах ароматизации, риформинга, гидрокрекинга, гидрогенизации углей, жидких топлив и жиров, гидроочистки нефтепродуктов и в разнообразных процессах восстановления в органическом синтезе. [c.205]

    Водород в современной технике является однша из основных химических продуктов и используется для синтеза аммиака, метанола, высших спиртов и других органических продуктов, для процессов гидрирования в нефтепереработке, в качестве топлива для ракет, как восстановительный агент в металлургии и во многих других областях. [c.3]

    В будущем возможно более широкое использование метанола в органическом синтезе и химической промышленности в целом, а также применение его в качестве топлива, источника водорода, в микробиологическом синтезе, для очистки сточных вод и других целей. В химической промышленности большое значение имеет синтез высших спиртов, алвдегидов, кетонов, кислот и углеводородов на основе водорода и окиси углерода. Производство этих продуктов потребляет более 5% водорода и в дальнейшем доля водорода для них будет возрастать.Таким образом, наряду с синтезом аммиака синтез органических продуктов является крупнейшим потребителем водорода. [c.5]

    На вторичный реформинг подается воздуха на 30-50% больше, чем это требуется для получения азотоводородной смеси в соотношении и =3 1, необходимом для синтеза аммиака. Температура на выходе из шахтного реактора около 900°С. Полученный газ проходит двухступенчатую конверсию окиси углерода в аппаратах 6 и 7 и поступает в абсорбер 8 для очистки от СО2 раствором карбоната калия или органическими растворителями. Затем газ подогревается до 320°С и поступает в метанатор 10. После охлаждения водой и хладоагентом газовый поток проходит через осушители II, заполненные цеолитами. Затем газ, состоящий из 60-70%, 30 40, 2-3% и 0,5% [c.257]

    Из 1 т каменного угля при коксовании образуются относительно небольшие количества (примерно 10 кг) ценных алифатических углеводородов, не считая метана. Если учесть, что из 1 т каменного угля можно выделить также около 10 кг бензола, то станет ясным, что выделение алифатических углеводородов может оказаться вполне выгодным, особенно если одновременно получать и водород, содержаш,ийся в коксовальных газах в большом количестве. Еще и 1920 г. в Северной Франции при переработке коксового газа с целью получения водорода для синтеза аммиака была выделена фракция углеводородов, содержащая 30% этилена, которую использовали как сырье для промьш1леипости органического синтеза (для производства спирта). [c.39]

    Данные элементы иногда делят на три подгруппы подгруппу железа (Fe, Ru, Os), подгруппу кобальта (Со, Rh, Ir) и подгруппу никеля (Ni, Pd, Pt). В пользу такого деления говорят характерные степени окисления элементов (табл. 26.1) и некоторые другие свойства. Например, все элементы подгруппы железа являются активными катализаторами синтеза аммиака, а подгруппы никеля — реакций гидрирования органических соединений. Для элементов подгруппы кобальта характерно образование колмплексных соединений состава [9(NH3)6]r3, где Г — галоген-ион. [c.522]

    В ряде случаев смесь двух катализаторов оказывает значительно большее влияние на скорость реакции, чем каждый из катализаторов в отдельности. Поэтому часто применяются смешанные катализаторы. Иногда добавление малого количества вещества приводит к значительному увеличению каталитической активности катализатора. Такие вещества называются промоторами. Например, синтез аммиака осуществляется на железном катализаторе, промотированном малыми количествами КзО и AI2O3. В других случаях добавление некоторых веществ в весьма малых количествах замедляет протекание определенных реакций. Например, окисление растворов NaaSOj кислородом замедляется в присутствии ряда органических веществ (алко-голи, анилин). Такие замедляющие реакцию вещества называются ингибиторами. [c.408]

    Применение. Наибольшее количество азота идет на синтез аммиака, из которого затем получают азотную кислоту и многие другие химические продукты, в частности, азотные удобрения (соли аммония, нитраты, мочевина, аммиачная вода и др.). Очень много Нз и HNOз расходуется на синтез различных органических ве1цеств. [c.411]

    Физическая химия позволяет определят[ь наиболее выгодные условия ведения многих технологических процессов, предвидеть их результаты, овладеть теорией этих процессов и научиться ими управлять. Все это имеет фгромное значение для развития химической промышленности (синтеза аммиака, метанола, широкого ассортимента органических веществ, пластических масс, химических волокон, Ьолучения продуктов нефтехимии и лесохимии и др.), металлургии, нефтяной промышленности, производства строительных материалов, сельского хозяйства, медицины и др. В свою очередь тесное единение развития теории с практикой обогащает физическую химию новыми проблемами и способствует ее развитию. [c.5]

    Структурные теории твердого тела — только что появившаяся область знаний. Иногда ее называют химией твердого тела , химией твердого состояния , но она, с другой стороны, является также и физикой твердого тела, так как в основном оперирует физическими понятиями и использует физические методы исследования. Это одно из наиболее перспективных направлений развития структурной химии, ибо оно обещает стать реальной основой неорганического синтеза. До сих пор неорганическая химия, подобно органической химии, основывалась на атомно-молекулярпом учении. Но это было грубой идеализацией, так как в отличие от органических веществ подавляющее большинство неорганических соединений представлено не совокупностями молекул, а реальными кристаллами. Неорганическая химия поэтому не имела таких успехов в синтезе химически индивидуальных веществ, каких достигла органическая химия она успешно решала задачи синтеза лишь тех соединений, которые существуют в форме совокупности молекул, например синтеза аммиака. Получение же оксидов, сульфидов, селенидов и многих других солей, а также интерметаллических соединений осуществлялось отнюдь не по принципу синтеза запроек-гироваиных структур, как это было в органическом синтезе, а по принципу стехиометрии, т. е. не в русле структурной химии, а в русле учения о составе — на уровне первой концептуальной системы. [c.99]

    Гетерогенный катализ широко применяется в целом ряде важнейших технологических процессов каталитическое окисление аммиака при производстве NN03, каталитический синтез аммиака, гидрогенизация органических веществ. Развитие теории гетерогенного катализа позволило значительно усовершенствовать эти процессы, а всевозрастающее применение катализаторов в промышленности в свою очередь стимулирует исследования в этой области. [c.237]

    Пиридилсульфамид применяется для синтеза различных органических соединений и физиологически активных препаратов. В литературе имеется сообщение о син-тезе 3-пиридилсульфамида из 3-пиридилсульфохлорида и аммиака в растворе бензола. Нами была проверена эта методика выход продукта составил 20%. [c.149]

    В книге описаны основные методы очистки технологических газов, применяемых для синтеза аммиака и некоторых других продуктов. Детально изложен широко распространенный метод моноэтаноламиновой очистки от двуокиси углерода и сероводорода абсорбция двуокиси углерода и сернистых соединений водой, щелочными растворами и органическими растворителями способы сухой очистки от сероводорода и каталитической тонкой очистки от кислородсодержащих примесей. Значительное внимание уделено новым процессам очистки, в частности очистке природного газа от высших углеводородов, газов пиролиза — от окислов азота и ацетилена. Подробно изложены физико-химические основы процессов, а также их аппаратурно-технологическое оформление. [c.2]

    Наряду с природным газом важным источником углеводородного сырья являются попутные газы нефтедобычи. В связи с целесообразностью применения высших гомологов метана для непосредственного производства метанола, формальдегида, ацеталь-дегида и других продуктов разработана технологическая схема комплексного использования попутных газов, по котор4й получаются безводные органические продукты (БОП) и технологический газ для синтеза аммиака В случае предваритель- [c.137]

    Способ ONIA-GEGI Технологическая схема получения газа для синтеза аммиака по этому способу представлена на рис. П-60. Производство газа по этой схеме состоит из пяти последовательных стадий циклический крекинг исходного нефтепродукта (например, мазута) с водяным наром очистка получаемого газа от гудрона п нафталина тонкая очистка газа от сероводорода, нафталина, бензола и органической серы конверсия метана и его гомологов воздухом конверсия окиси углерода. [c.188]

    Процесс низкотемпературной абсорбции в промышленности следует проводить под давлением 10—30 ат. Поэтому применение рассматриваемого метода наиболее экономически целесообразно в тех случаях, когда очищаемый газ подается под давлением (газы, получаемые газификацР1ей твердого топлива или нефти под давлением, природный газ) либо должен компримироваться по условиям его дальнейшей переработки (синтез аммиака, спиртов и некоторых других органических продуктов, дальнее газоснабжение). [c.279]


Смотреть страницы где упоминается термин Синтез аммиака и органических: [c.44]    [c.459]    [c.541]    [c.492]    [c.247]    [c.235]    [c.431]    [c.113]    [c.69]   
Химическая литература Библиографический справочник (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез аммиака

Синтез аммиака синтеза аммиака



© 2025 chem21.info Реклама на сайте