Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Часть Б. Биосинтез нуклеиновых кислот

    Нуклеиновые кислоты — важнейшие компоненты (составные части) всех живых клеток. Эти вещества регулируют передачу наследственных признаков в ряду поколений. Им принадлежит ведущая роль в процессе биосинтеза белков. [c.22]

    Часть Б. Биосинтез нуклеиновых кислот 44 [c.350]

    Биологическое действие. Витамин В, (тиамин) участвует в регуляции углеводного обмена, так как является составной частью ферментов, ускоряющих превращение пировиноградной кислоты в ацетил-КоА — основное промежуточное вещество аэробного окисления углеводов и других веществ. Этот витамин входит также в состав ферментов, участвующих в биосинтезе нуклеиновых кислот, а также ферментов цикла лимонной кислоты, увеличивающих образование АТФ, особенно в нервных клетках. [c.115]


    Нуклеопротеиды имеют важнейшее биологическое значение. Деление клеток, биосинтез белка, передача наследственности тесно связаны с нуклеопротеидами и их составными частями — нуклеиновыми кислотами и нуклеотидами. Ведущая роль в этих проявлениях принадлежит нуклеиновым кислотам. [c.429]

    Последняя часть (гл. 15 и 16) посвящена проблемам биохимической генетики и гормональной регуляции обмена веществ и развития организмов, а также деятельности мозга. Гл. 15 охватывает не только вопросы биосинтеза нуклеиновых кислот и белков, но и дает представление о методах, используемых в биохимической генетике. Указанные сведения помещены в конце книги, но преподаватели могут их использовать (частично или целиком) в начале чтения курса. Последняя глава представляет собой краткое введение в проблемы межклеточных коммуникаций, нейрохимии, диффереицировки клеток, а также экологии. [c.9]

    Опираясь на быстро растущий объем знаний в области молекулярной биологии, отечественные традиции в исследовании нуклеиновых кислот и собственный опыт работы, автор данного учебника подготовил в 1964 г. и начал чтение курса лекций по молекулярной биологии в Московском государственном университете. Конечно, с течением времени курс эволюционировал и расширялся, и теперь он состоит из трех частей ( Строение и биосинтез нуклеиновых кислот , Структура рибосом и биосинтез белков и Структура и функции белков ). В основу предлагаемой книги положена та часть курса лекций, которая посвящена структуре рибосом и биосинтезу белка. [c.4]

    Азот требуется для биосинтеза и аминокислот, и нуклеотидов. В природе, однако, встречается мало растворимых соединений азота в биологически доступной форме. Поэтому большинство организмов использует аммиак, аминокислоты и нуклеотиды экономно, тем более что все эти соединения являются предшественниками важнейших биомолекул-нуклеиновых кислот и белков. Действительно, как мы уже знаем, свободные аминокислоты, пурины и пиримидины, образующиеся в процессе метаболического обновления, часто вновь идут в дело, т.е. используются повторно. [c.674]

    Часть В. БИОСИНТЕЗ ВИРУСНЫХ НУКЛЕИНОВЫХ КИСЛОТ [c.353]

    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]


    Каковы же функции РНК Прежде чем переходить к этому вопросу, следует отметить, что со времен Мишера, открывшего 90 лет назад нуклеиновые кислоты, исследователи обращали внимание на то, что РНК содержатся в изобилии в тех частях клетки, где особенно интенсивно идет биосинтез белка. [c.263]

    Нуклеиновые кислоты — углеводы. При распаде углеводов образуется рибозо-5-фосфат, совершенно незаменимое соединение для биосинтеза пуриновых и пиримидиновых нуклеотидов. Составные части пуриновых и пиримидиновых нуклеотидов — ,П-рибоза и дезоксирибоза — поступают в нуклеиновые кислоты за счет распадающихся углеводов. [c.458]

    Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов (см. главу 2) последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада—аминокислот, подробно рассмотренному в главе 12. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности MOHO-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка. [c.469]

    Всем живым организмам помимо источников углерода, кислорода и энергии необходим еще и источник азота. Азот требуется для биосинтеза аминокислот, а также пуриновых и пиримидиновых оснований, т. е. тех азотсодержащих строительных блоков, из которых затем производится сборка белков и нуклеиновых кислот. И здесь мы встречаем уже знакомые нам различия живые организмы сильно различаются в зависимости от того, в какой химической форме способны они усваивать азот. Почти все высшие животные должны получать по крайней мере часть необходимого им азота в виде аминокислот. Например, в рацион человека и белой крысы 10 из 20 обычных аминокислот должны входить в готовом виде, потому что их организм не способен синтезировать эти аминокислоты из более простых предшественников. Растения могут обычно использовать в качестве единственного источника азота аммиак или растворимые нитраты. Лишь сравнительно немногие организмы обла- [c.377]

    Всасываются преимущественно нуклеозиды, и в таком виде часть азотистых оснований может быть использована для синтеза нуклеиновых кислот организма. Если происходит дальнейший распад нуклеозидов до свободных пуриновых и пиримидиновых оснований, то гуанин не используется для синтетических целей. Другие основания, как показывают опыты с меченными по азоту аденином и урацилом, в тканях могут включаться в состав нуклеиновых кислот. Однако экспериментальные данные свидетельствуют, что биосинтез азотистых оснований, входящих в состав нуклеиновых кислот органов и тканей, протекает преимущественно, если не целиком, de novo из низкомолекулярных азотистых и без-азотистых предшественников. [c.470]

    Бурное развитие наших знаний, происшедшее за последние годы в области изучения нуклеиновых кислот, особенно в связи с проблемой процессов биосинтеза и кодирования, а также в связи с развитием представления о РНК-посреднике, привело к необходимости полностью переработать почти половину книги остальная часть подверглась существенной обработке, а устаревший материал и вовсе был исключен. Таким образом, настоящее, пятое, издание сильно отличается от четвертого и имеет весьма мало общего с первым изданием. Однако заглавие сохранилось без изменения. В последнее время стало модным употреблять термин молекулярная биология для обозначения биохимического направления в изучении таких макромолекул, как нуклеиновые кислоты и белки. Однако мы оставили в заглавии термин биохимия , который и означает изучение на молекулярном и атомном уровнях организации и функции биологических систем . [c.7]

    НуклеотиДы представляют собой элементарные звенья, из которых построены сложные молекулы нуклеиновых кислот. В состав одной молекулы нуклеиновой кислоты могут входить многие тысячи нуклеотидов. Отдельные нуклеотиды в молекулах нуклеиновых кислот соединены в цепи при помощи фосфорной кислоты. Молекулярный вес РНК составляет от нескольких десятков тысяч до нескольких миллионов, молекулярный вес ДНК достигает 6—8 миллионов. Основная роль ДНК — передача наследственных свойств и перенос биологической информации РНК принимает непосредственное участие в биосинтезе специфических белков. В растениях нуклеиновые кислоты часто образуют комплексы с белками, так называемые нуклеопротеиды.  [c.231]


    Изучение вирусов имеет большое значение для разрешения проблемы биосинтеза белка. На это указывает тог факт, что все, даже самые простые, вирусы содержат белок и нуклеиновые кислоты [113]. Низшие вирусы содержат только рибонуклеиновую кислоту, в состав же высших вирусов входит и дезоксирибонуклеиновая кислота. Высокое содержание нуклеиновых кислот в вирусах дает основание считать, что значительная часть их белков представляет собой кислые нуклеопротеиды. В области pH, лежащей между изоэлектрическими точками белков и нуклеиновых кислот, они могут соединяться с сывороточным альбумином и другими белками, образуя нерастворимые при низкой ионной силе мезоморфные волокна [114]. [c.398]

    Экспериментально доказано, что ДНК играет весьма важную роль в процессе синтеза некоторых ядерных белков. Это можно показать на следующем опыте. Ядра, выделенные из клеток, например из корешков гороха, с соблюдением всех предосторожностей, с сохранением присущих им ферментативных функций, обладают способностью к синтезу белка. Если же разрушить ДНК э- их ядер путем их обработки ферментом дезоксирибонуклеазой, го биосинтез белка прекращается. Уже неоднократно упоминалось, что наследственные свойства организмов, а значит, и свойства синтезируемых организмами белков определяются нуклеиновыми кислотами. Давно известно, что большая часть клеточной ДНК сосредоточена в хроматине ядра. Таким образом, ДНК локализована в тех же клеточных структурах, в которых хранится наследственная информация. Оказалось, что способность к синтезу специфических белков-ферментов и передача этой способности в поколениях связаны с дезоксирибонуклеиновой кислотой (ДНК). [c.273]

    Белки являются составной частью большинства биокатализаторов клетки ферментов, витаминов и гормонов, с помощью которых в организме осуществляются многочисленные реакции обмена, в частности все реакции биосинтеза и распада в живой клетке катализируют специфические белки — ферменты. Их установлено более тысячи. Имеются ферменты, контролирующие синтез различных аминокислот и азотистых оснований, т. е. веществ, необходимых для синтеза самих белков и нуклеиновых кислот. Следовательно, важнейшая функция белков — ферментативная. Нуклеиновые кислоты воспроизводятся также с помощью соответствующих белков —полимераз. [c.22]

    Важнейщим путем интенсификации биосинтеза антибиотиков является выведение и использование штаммов продуцентов с повышенной антибиотической активностью. Получение таких штаммов стало возможным благодаря разработке и широкому применению методов экспериментального мутагенеза. Из физических факторов в селекционной работе эффективно используются ионизирующие излучения (рентгеновы лучи, -у-лучи, быстрые нейтроны и др.), ультрафиолетовая радиация, температура, ультразвук. Высокую частоту наследуемых изменений вызывают у микроорганизмов также многие химические соединения, которые предложено объединять (Никифоров, 1965) в следующие группы ингибиторы предшественников нуклеиновых кислот аналоги азотистых оснований, включающиеся в нуклеиновые кислоты алкилирующие соединения окислители, восстановители и свободные радикалы акридиновые красители. Из факторов биологической природы в селекции продуцентов антибиотиков часто применяются фаги и антибиотики. [c.179]

    При отборе материала для четвертого издания учебника учитывалось, как и ранее, значение определенных разделов биохимии для формирования отчетливых представлений по общей биохимии, а также то, что развитие самой биохимии в отдельных ее частях идет неравномерно за последнее время произошли огромные сдвиги в изучении строения и обмена некоторых групп органических соединений. Поэтому в книге уделено много внимания строению белков, нуклеиновых кислот и ферментов, рассмотрены особенности белковых тел как носителей жизни, обращено внимание на принцип комплементарности в строении нуклеиновых кислот и его значение в матричном биосинтезе природных полимеров, изложены современные представления о биологическом окислений, регуляции обмена веществ и взаимосвязи обмена соединений различных классов. Там, где это уместно, освещены вопросы использования достижений биохимии в развитии новых направлений в биологических науках (химическая систематика, молекулярные основы наследственности, изменчивости и эволюции и др.), медицине (наследственные болезни, биохимическая диагностика, стратегия химиотерапии, взаимодействие вирусов и клеток и т. п.), сельском хозяйстве (биохимическая паспортизация генетического фонда, экологическая биохимия, клеточная инженерия и др.) и промышленном производстве (инженерная энзимология, техническая биохимия, фармацевтическая химия, микробиологический синтез и т. п.). [c.3]

    Все другие виды обмена—углеводный, липидный, нуклеиновый, минеральный и пр.— обслуживают обмен белков, специфический биосинтез белка. Одни группы процессов, как, например, углеводный обмен, являются в основном источником углеродных цепей в биосинтезе аминокислот—исходных соединений для новообразования белков. Другие, как, например, обмен жиров, главным образом поставляют вещества, при окислении которых в макроэргических связях АТФ запасается энергия, необходимая для образования пептидных связей. Третьи (обмен нуклеиновых кислот) обеспечивают хранение и передачу информации о расположении аминокислотных остатков во вновь синтезируемых белковых молекулах, обслуживая специфическое воспроизведение уникальной структуры протеинов. Четвертые (минеральный обмен) способствуют становлению или распаду ферментных систем, при посредстве которых идет синтез белка, или созданию и разрушению субклеточных частиц и структур, на которых этот синтез осуществляется. Таким образом, многочисленные, разнообразные и часто очень сложные процессы превращения веществ и трансформации энергии в живом веществе обслуживают главным образом обмен белковых тел. Последний, в свою очередь, так регулирует упомянутые превращения, что создает оптимальные условия для своего собственного осуществления. [c.261]

    Очевидно, что многие нуклеозиды являются интермедиатами в биосинтезе н расщеплении нуклеотидов и полинуклеотидов. В дополнение к так называемым спонгонуклеозидам (термин, применяемый к модифицированным пуриновым нуклеозидам, полученным из карибской губки ryptotethya rypta), которые являются производными арабинозы, многие антибиотики являются производными нуклеозидов, часто имеющих модифицированные углеводные остатки они будут детально обсуждаться позднее. Нуклеозиды сравнительно легко выделить из химических или ферментативных гидролизатов природных полинуклеотидов условия и практические детали этого процесса можно найти в общих учебниках по нуклеиновым кислотам [2, 7, 24]. Все коммерчески доступные образцы основных нуклеозидов получены этим путем. Для выделения больщих количеств таких нуклеозидов наиболее целесообразно применение относительно грубого фракционирования, основанного на различной растворимости, и методов ионного обмена. Для выделения малых количеств модифицированных нуклеозидов либо из природного источника, либо полученных в результате химического синтеза, пригодны многочисленные более эффективные методы, и они будут обсуждаться отдельно. Наконец, следует помнить, что выделение нуклеозидов часто осуществляют дефосфорилированием нуклеотидов [25], выделение и разделение которых не будет рассматриваться в настоящей главе. [c.72]

    Очень часто при описании методов синтеза и свойств пептидов не рассматриваются аналогичные методы синтеза и свойства не менее важных соединений — фосфодиэфиров. Действительно, стратегия синтеза и проблемы, которые при этом возникают (например, использование ДЦГК, защитные группы, синтез на полимерном носителе и т. д.), весьма похожи, если не одинаковы, хотя никогда не обсуждаются параллельно. Восполнить этот пробел— вот цель настоящей главы. При этом, как и ранее, проводится сравнение с биосинтезом фосфатной связи. Следовательно, в настоящей главе сравниваются химические и биологические (биоорганические) свойства двух функционально важных классов макромолекул белков и нуклеиновых кислот. Разумеется, мы дополним эту картину, рассмотрев свойства еще двух мононуклеотидов, играющих важную роль в биологических процессах,— нук-леозидтрифосфатов и циклических нуклеотидов. Это показывает, что, подобно аминокислотам, для биологических систем важны не только полимерные молекулы. Рассматривая этот вопрос, мы вновь проведем сравнение химического и биологического путей синтеза. Освещаются результаты исследований, опубликованные в литературе, включая 1980 г. [c.104]

    При введении радиоактивного изотопа в виде простого химического соединения в живой организм образуются более сложные продукты, содержащие радиоактивный атом. Биосинтетический способ получения меченых соединений применяют в тех случаях, когда химический синтез этих веществ слишком сложен. Этот способ был использован для метки многих природных соединений, например белков, полисахаридов, нуклеиновых кислот, пуринов, пиримидинов, витаминов, гормонов, стероидов, алкалоидов, терпенов, карбоновых кислот, аминокислот, жиров и жирных кислот из радиоизотопов чаще всего применяют и Р -. Биосинтезы приводят обычно к неспецифически меченным соединениям с низким выходом требуемого продукта. Однако, если большая часть образующихся меченых соединений может быть использована для различных целей, то их биосинтез экономически выгоден. [c.683]

    Аминокислоты как основные составные части белков участвуют во всех жизненных процессах наряду с нуклеиновыми кислотами, углеводами и липидами. Кроме аминокислот, входящих в состав белков, живые организмы обладают постоянным резервом свободных аминокислот, содержащихся в тканях и в клеточном соке. Они находятся в динамическом равновесии при многочисленных обменных реакциях. Аминокислоты используются в биосинтезе полипептидов и белков, а также в синтезе фосфатидов, порфи-ринов и нуклеотидов. [c.10]

    Г люкоза может вступать во вторичные катаболические реакции, в результате которых образуются специальные продукты. Пентозофосфатный путь, начинающийся с дегидрирования глюко-зо-6-фосфата, поставляет рибозо-5-фос-фат и NADPH. Реакции пентозофосфатного пути, приводящие к этим продуктам, протекают в растворимой части цитоплазмы - цитозоле. Рибозофосфаты служат предшественниками при синтезе нуклеотидов и нуклеиновых кислот, а NADPH используется в качестве главного восстановителя при биосинтезе таких богатых водородом соединений, как жирные кислоты и холестерол. Из глюкозы образуется и UDP-D-глюкуронат, который способствует обезвреживанию некоторых чужеродных веществ в организме, а также является предшественником L-аскорбиновой кислоты (витамина [c.503]

    В книге проф. Дж. Дэвидсона обширная проблема биохимии нуклеиновых кислот рассматривается вся в целом, почти во всех ее разнообразных аспектах. В пределах сравнительно небольшого объема книги кратко рассмотрены химия нуклеиновых кислот, методы их определения, локализация и роль в клетке, обмен (включая биосинтез), а также их биологическое значение и связь с вирусами. Книга была переведена на русский, французский, польский и японский языки. Ее популярность растет с выходом каждого очередного издания, создаваемого плодовитым пером автора. Эта книга была первой в серии Биохимические монографии , однако ввиду частых публикаций новых ее изданий она никогда не отставала от современного состояния проблемы. Излишне говорить о большом спросе на эту книгу. Достаточно указать, что за 15. лет она выдержала 5 изданий res ipsa loquitur. [c.6]

    Вирусы, которые не имеют клеточной структуры, являются с химической точки зрения также нуклеоиротеидами. Важная биологическая роль нуклеиновых кислот в вирусах выясняется из того факта, что при заражении вирусом (например, бактериофагом — Bjipy oM бактерий) заражаемая клетка получает от вируса только нуклеиновую кислоту, а белковая часть (оболочка) вируса остается снаружи, в клетку не проникает и отбрасывается. После заражения внутри клетки-хозяина за счет нуклеотидных, аминокислотных н ферментных ресурсов этой клетки вырастает множество частиц вируса (бактериофага). Эти новые частицы состоят не только из многократно повторенных нуклеиновых кислот, но имеют и белковые оболочки, тождественные с белком исходной заражающей частицы вируса, хотя белок не проникал в зараженную клетку. Отсюда ясно, что нуклеиновые кислоты принимают решающее участие в биосинтезе белка, чему позднее мы приведем и другие доказательства. Это поставило полинуклеотиды в центр интересов современного естествознания, тогда как отдельные нуклеотиды были известны еще со времен Либиха. [c.673]

    Таким образом, но-видимому, нельзя полностью отрицать существования обратимости действия эстераз. Возможно, что отрицательные результаты, полученные в ряде случаев, объясняются тем, что условия проведения реакций не были оптимальны для протекания реакции этерификации. Пе исключено также, что прямую и обратную реакцию катализируют разные ферменты. В настоящее время хорошо известно, что процессы синтеза и распада часто катализируются не одними и теми же ферментами нротеазы, например, не участвуют в белковом синтезе, а нуклеазы — в синтезе нуклеиновых кислот. То же самое справедливо относительно биосинтеза и распада аминокислот, коферментов, липидов. Не исключено, что и биосинтез эфиров карбоновых кислот катализируется не теми ферментами, которые ответственны за их расщепление. [c.34]

    Муклеопротеиды относятся к числу наиболее важных в биологическом отношении белковых веществ. Они состоят из белка и простетической группы — нуклеиновых кислот. /Нуклеиновые кислоты входят в состав всех клеток. Они являются основной частью клеточного ядра (от лат. nu leus — ядро) и играют первостепенную роль в передаче генетической информации и биосинтезе белков. [c.60]

    Нуклеиновые кислоты, которые делятся на дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты, были открыты в клеточном ядре, чем и объясняется их название (nu leus — ядро) РНК встречается также и в других частях клетки. Обе кислоты, играющие очень важную роль в биосинтезе белка, являются линейными полиме- [c.246]

    Следует иметь в виду, что большая часть информации о механизме биосинтеза белка была получена в опытах с бактериальными системами, в которых в качестве мРНК использовали либо нуклеиновые кислоты из бактериофагов или вирусов, либо искусственно полученные полинуклеотиды. Это связано [c.9]

    Взаимосвязи в обмене нуклеиновых кислот и углеводов многообразны. Во-первых, в процессе апотомического распада углеводов образуется рибозо-5-фосфат, из которого возникает 5-фосфорибозил-1-пирофосфат, служащий совершенно незаменимым соединением для биосинтеза пуриновых и пиримидиновых нуклеотидов. Именно 5-фосфорибозил-1-пирофосфат принимает на себя недостроенную молекулу пиримидина и именно на 5-фосфорибозил-1-пирофосфате начинает строиться имидазольный цикл будущего пуринового кольца. Таким образом, р,0-рибоза и Р,0-дезоксирибоза, являющиеся непременными составными частями пуриновых и пиримидиновых нуклеотидов, поступает в нуклеиновые кислоты за счет распадающихся углеводов. [c.469]

    Что касается иного типа взаимосвязей обмена нуклеиновых кислот и липидов, то они выявляются более отчетливо. При распаде пиримидиновых оснований возникает Р-аланин—аминокислота, используемая для биосинтеза коэнзима А, столь необходимого как для новообразования, так и для деструкции высших жирных кислот. Несомненно, что Р-окисление высших жирных кислот—составных частей большинства липидов—служит источником для поддержания на достаточном уровне синтеза нуклеозидтрифосфатов, если указанное окисление сопряжено с фосфорилированием и новообразованием АТФ. Так же, как и в биосинтезе углеводов, большую роль в биосинтезе некоторых липидов играют нуклеозиддифосфатсоединения, для образования которых расход)Шзтся соответствующие нуклеозидтрифосфаты. Так, для биосинтеза ЦДФ-холина или ЦДФ-коламина—важнейших метаболитов в синтезе фосфатидов—необходим ЦТФ—метаболит нуклеинового обмена. [c.470]

    Биосинтез углеводов в значительной мере зависит от нуклеинового обмена. Эта зависимость выражается в том, что известная часть уридинтрифосфорной кислоты используется для биосинтеза УДФ-глюкозы - важнейшего продукта, гликозидные остатки с которого переносятся на нередуцирующий конец молекулы синтезируемого глюкана. [c.458]


Смотреть страницы где упоминается термин Часть Б. Биосинтез нуклеиновых кислот: [c.5]    [c.255]    [c.312]    [c.679]    [c.333]    [c.73]    [c.333]    [c.105]    [c.535]   
Смотреть главы в:

Молекулярная биология -> Часть Б. Биосинтез нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте