Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан фотометрическое

    Ионы Ре в присутствии галогенидов или роданидов осаждаются диантипирилметаном. Образующееся соединение экстрагируется хлороформом. Это позволяет отделять железо от титана. В водной фазе определяют титан фотометрически при помощи диантипирилметана. При очень малом содержании титана определение можно закончить экстракционно-фотометрическим методом, извлекая после отделения железа соединение титана с диантипирилметаном хлороформом. [c.143]


    Если в стали присутствует титан, то осадок пятиокисей ниобия и тантала содержит примесь окиси титана. Взвешенный осадок сплавляют с пиросульфатом калия, выщелачивают 20 мл серной кислоты (1 4), раствор переводят в мерную колбу емкостью 50—100 мл и определяют титан фотометрическим методом. Найденное количество двуокиси титана (в г) вычитают из полученной массы пятиокисей ниобия и тантала. [c.197]

    Пероксидные комплексы. Пероксид водорода образует комплексы с титаном, ванадием, церием, ниобием, танталом и др. Чаще всего пероксидные комплексы применяют для фотометрического определения титана, ванадия, ниобия и тантала. [c.268]

    Титан ведет себя подобно алюминию, но взаимодействует с комплексоном III неколичественно. Вследствие этого рекомендации некоторых авторов [62, 166, 679, 680] об определении в аликвотной части раствора содержания титана фотометрическим методом и введении поправки применимы лишь при его малых содержаниях. Титрование суммы алюминия и титана возможно при количествах ТЮа, меньших 4 мг [229]. До 5 мг титана можно маскировать, если ввести перекись водорода (1 мл 1%-ного раствора) перед добавлением комплексона III [854]. В присутствии больших количеств титана алюминий определяют при введении фосфатного буфера [166]. В этом случае титан осаждается в виде фосфата и титруется один алюминий. Однако присутствие фосфат-иона ухудшает четкость изменения окраски раствора в эквивалентной точке. Поэтому титан (если он присутствует в значительных количествах) лучше предварительно отделить, например, экстрагированием его купфероната. Указания некоторых авторов 31, 934], что небольшие количества титана не мешают, следует принимать с осторожностью. Действительно, влияние его незаметно при высоких содержаниях алюминия (30—50%), поможет стать значительным при определении малых количеств алюминия. [c.68]

    Алюминий в металлическом титане можно определять фотометрически алюминоном [545, 649, 6551 и метилтимоловым синим [4311. [c.219]

    Образует соли (типа аммиакатов), например с титаном (IV) и цирконием (IV). Применяют для фотометрического определения титана (IV) в интервале кислотности от 0,1 до 5—6 н. Определению не мешают ванадий, молибден, вольфрам, тантал, ниобий, железо, кобальт, никель, хром, марганец, алюминий, цинк, кадмий и ртуть. [c.134]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]


    Экстракционно-фотометрическим методом с применением бриллиантового зеленого определяют Sb в железе, чугуне, сталях и сплавах на основе железа [408, 1074, 1351], индиевых сплавах [661, 662], кадмии и его солях [568], меди и ее сплавах [393, 408, 649, 686], минералах [1549], мышьяке [364], никелевых сплавах [686], оловянных рудах и продуктах их обогащения [1063], осадочных породах [1550], почвах [1549, 1550], продуктах свинцово-цинкового производства [626], сточных водах заводов цветной металлургии [784], титане и его окислах [1083, 1467], фармацевтических препаратах [1467], феррохроме и хроме [393], цинке [769], его сплавах с галлием [661], цинковых злектролитах [757]. [c.48]

    В титане и двуокиси титана ЗЬ > 1 10" % (5 = 0,05- - 0,15) определяют экстракционно-фотометрическими методами с применением метилового фиолетового 1498], бриллиантового зеленого [1083, 1467] и родамина С [1179]. Для определения ЗЬ [c.151]

    Титан (до 5-10 %) определяют экстракционно-фотометрическим методом по интенсивности окраски экстракта роданидного комплекса титана(1У) в метилизобутилкетоне с ошибкой до 2% для проведения анализа требуется значительный избыток роданида [1235]. [c.272]

    Фотометрическое определение молибдена тиояблочной кислотой выполняют в среде 0,5 М НС1 или при pH 3,6 [67]. В среде 0,5 М НС1 реагент обладает высокой селективностью. Метод был применен для определения молибдена в сплавах, содержащих титан и цирконий, и в сталях. [c.238]

    В четыреххлористом титане серу определяют или с помощью импульсной полярографии [1479], или (после переведения в H2S) фотометрически в виде метиленового голубого, или иодометрически [189]. [c.200]

    В присутствии комплексона III значительные количества мешающих элементов удерживаются в растворе при осаждении бериллия с фосфатом титана. Содержание алюминия, например, может превосходить содержание бериллия в 10 000 раз. Осаждение производят из ацетатного буферного раствора (pH 5,3) (см. стр. 160). Влияние титана при фотометрическом определении бериллия устраняется связыванием его в бесцветный в щелочной среде комплекс с перекисью водорода. В таком виде присутствие титана не влияет на интенсивность окраски соединения бериллия с бериллоном II. Некоторое количество алюминия соосаждается с фосфатом титана, но не оказывает влияния на результаты колориметрирования. Олово осаждается с титаном и в больших количествах мешает определению бериллия. [c.170]

    Определение бериллия в рудах фотометрическим методом с бериллоном II можно произвести после отделения мешающих элементов путем экстракции бериллия в виде бутирата хлороформом [587] или ионообменным методом [610]. Руду предварительно разлагают сплавлением с бифторидом калия или содой. Из раствора, не содержащего кремневой кислоты, осаждают гидроокиси бериллия, алюминия и железа аммиаком, растворяют их в соляной кислоте и производят экстракцию бутирата (стр. 133) или пропускают раствор через колонку с катионитом КУ-2 в водородной форме (длина колонки 9 см, диаметр 0,9 см, скорость пропускания 0,5 мл/мин). Бериллий (и титан) десорбируют 150—200 мл 0,5 N раствора НС1. В фильтрате определяют бериллий с бериллоном II. [c.171]

    Сера, находящаяся в бериллии в виде сульфата, может быть переведена в сульфид восстановлением титаном в фосфорной кислоте [796]. Определение можно закончить фотометрическим методом (после поглощения НгЗ раствором ацетата цинка) с фе-нилендиамином. Восстановление пробы бериллия смесью железа и олова и переведение серы в 80г сжиганием в токе кислорода позволяет использовать иодометрическое определение серы (в концентрации > 10 Зо/о) [797]. [c.197]

    Кислотный хром темно-синий применен также для фотометрического определения кальция в биологических объектах [655, 748, 1657], чугуне [1316], металлическом титане [987]. Используется также для косвенного фотометрического определения кальция эриохром черный Т [1351, 1546, 1663]. [c.100]

    Кобальт при содержании его в титане ЬЮ —2-10 %1 определяют фотометрическим методом, описанным на стр. 42, аналогичным методу для анализа сталей В основу его положена реакция образования комплекса кобальта с 2-нитрозо-1-нафтолом в слабокислом растворе (pH 5). Комплекс экстрагируют бензолом и определяют содержание кобальта измерением оптической плотности окрашенного экстракта. Для предотвращения гидролиза солей титана при pH 5 в раствор вводят фторид-ион в качестве комплексообразующего агента. [c.40]

    Ниже (см. стр. 60) описан наиболее удобный фотометрический метод определения марганца в титане и его сплавах, в основу которого положена реакция образования перманганата при окислении ионов марганца (И) иодатом калия в кислом растворе [c.59]

    Фотометрический д етод (см. стр. 85) определения фосфора в титане может быть применен и для анализа этого элемента в вольфраме, но со следующими изменениями. [c.214]

    В четыреххлористом титане магний определяют фотометрическим методом с титановым желтым после отделения титана экстрагированием его купфероната [136]. Чувствительность метода 2-10 %, относительная ошибка 10% при содержании 2-10 % магния. [c.204]


    Для определения магния в металлическом титане можно рекомендовать фотометрический метод с титановым желтым [13G, [c.215]

    Фотометрическое определение бора в титане и его сплавах [519]. [c.232]

    К 0,5 мл раствора титана и ванадня в концентрированной серной кислоте осторожно, прн охлаждении, приливали ],5мл воды, определенный объем 0,6 М раствора NaF, около 2 мл 7 N NaOH, затем разбавленный раствор NaOH до необходимого значения pH и снова воду до общего объема 15 мл. Полученный раствор встряхивали 5 мин. с 5 мл 0,05 М раствора БФГА в бензоле, разделяли фазы центрифугированием и анализировали их. Ванадий определяли радиометрически, как описано выи1е, титан- фотометрически по реакции с перекисью водорода [6J. [c.77]

    Титан Фотометрическое определение H I, конц. р-р KSGN Амиловый спирт — 57 [c.231]

    Титан Фотометрическое опре- 0,1-н. H2SO4 Динатриевая соль 2,7- Влияние Fe3+ V (V) [65,66] [c.162]

    Титан Фотометрический, с динатриевой солью хромотроповой кислоты [6, с.224-229] [c.25]

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]

    Титан определяют фотометрически перекисью водорода в 5%-ной серной кислоте, а также хромотроповой кислотой и другими реагентами. [c.274]

    Титан осаждается вместе с алюминием. В этом случае вводят поправку после фотометрического определения его с перекисью водорода, прокаленный осадок лредварительно сплавляют с КН804. Продолжительность определения 2 часа. [c.54]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]

    Фотометрический метод с применением хромазурола С. Определение основано на образовании окрашенного в фиолетовый цвет соединения алюминия схро-мазуролом С при pH 5,7—6,0. Железо, титан, хром и другие катионы отделяют гидроксидом натрия. Определяют 5— 24 мкг АР+ в 50 мл раствора. [c.347]

    Пирогалловый метод, впервые предложенный еще в 1937 г. М. С. Платоновым и Н. Ф. Кривошлыковым, до последнего времени был наиболее распространенным методом фотометрического определения содержания тантала. В настоящее время этот метод не всегда удовлетворяет требованиям контроля производства тантала по причине сравнительно невысокой чувствительности (в среде, 4 М по НС1, = 2,4-103 при Хтах = 335 нм) и недостаточной избирательности (определению мешают титан, ниобий, молибден, вольфрам, фториды). [c.152]

    Сг207 " = 7 7 1. Максимум светопоглощения находится при 380 и 550 ммк. Метод пригоден для определения 10—80 мкг Со. Мешают ионы трехвалентного железа, никеля, меди, алюминия, цинка, кадмия, бария и свинца. При фотометрическом определении кобальта в форме окрашенного соединения с этилендиамин-гетрауксусной кислотой, образующегося в аммиачном растворе в присутствии Н2О2 [1320], оптическую плотность измеряют при 580 ммк. М ешают железо, титан, никель и медь. [c.146]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]

    В книге описаны методы определения более 30 элементов в титане, цирконии, гафнии и нх сплавах, а также методы анализа ниобия, тантала, вольфрама и сплавов этих металлов. Большое внимание уделяется инструментальным методам анализа — реитгеио-спектральному, спектрографическому, полярографическому, фотометрическому и др. [c.4]

    Для анализа проб, содержащих более 0,1% бора (вплоть до 2%), рекомендуется прямой фотометрический метод, в котором проводится предварительная дистилляция бора. Однако указанный метод неприменим при содержании бора менее 0,1%, так как титан, образующий желтый комплекс с куркумином, вызывает значительную ошибку при этих концентрациях. Если содержание титана составляет 0,5 мг, скорость образования борокуркуминового комплекса значительно уменьшается и лишь через 1 ч реакция стабилизируется в достаточной степени. В присутствии больших количеств титана скорость реакции уменьшается еще сильнее и метод становится неприменимым. [c.23]

    Оба фотометрических лтетода определения фосфора в титане, описанные в этом разделе, основаны на реакции образования фосфорно-ванадомолибдатного комплекса, имеющего желтую окраску в слабокислом растворе s8-oo Прямой метод применяют для определения 0,02—0,1% фосфора. Метод, включающий экстракцию окрашенного комплекса изоамиловым спиртом, применяют для определения менее 0,02% фосфора. [c.84]

    В отличие от титана цирконий и гафний не дают цветной реакции с розоцианином. Следовательно, прямой фотометрический метод может быть применен для анализа этих материалов, когда содержание бора в них значительно меньше, чем в титане. [c.121]

    Титан в 2г10, 2г20, 2г30 и гафнии при содержании этого элемента ниже 0,005% обычно определяют спектральными методами (см. стр. 169 и 172, 183 и 184). Фотометрический метод, основанный на образовании в кислом растворе пертитановой кислоты, предназначен главным образом для контроля результатов спектрального анализа и применяется для анализа проб, содержащих 0,004—0,1% титана. Этот интервал можно расширить до 1 % титана, если уменьшить навеску пробы или взять меньшую кювету. Для внесения поправки на присутствие железа и других окрашенных ионов в качестве компенсирующего раствора используют аликвотную часть анализируемого раствора, но без добавки перекиси водорода. [c.158]

    Для определепия магния в металлическом титане и его сплавах предложены так ке фотометрические методы с солохром-цианином R [610], пикраминазо [104] и магнезоном [58]. Гравиметрический фосфатный [598] и комплексонометрический [955, 1101] методы определения магния малочувствительны и к образцам с малым содержанием магния неприменимы. [c.215]

    Можно привести много примеров избирательной экстракции одного микрокомпонента для его последующего фотометрического определения, но ограничимся лишь двумя. Избирательная экстракция сурьмы в виде ниридиннодидного комплекса эфиром [2, 21] и олова в виде диэтилдитиокарбамината из сернокислого раствора хлороформом [22, 23] позволяет определять микропримеси этих элементов высокочувствительными реакциями с триокси-флуоронами даже в тех металлах, которые сами реагируют с этими реактивами — в германии, ниобии, тантале, титане и др. [c.9]


Смотреть страницы где упоминается термин Титан фотометрическое: [c.99]    [c.170]    [c.213]    [c.41]    [c.70]   
Гетероциклические азотосодержащие азосоединения (1982) -- [ c.119 ]

Практическое руководство по аналитической химии редких элементов (1966) -- [ c.133 ]

Гетероциклические азотосодержащие азосоединения (1982) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Реактивы для фотометрического определения титана

Титан фотометрическое определение с бензоилфенилгидроксиламином, методика

Титан экстракционно-фотометрическое

Титан, определение фотометрическое

Титана фотометрическими методам

Фотометрическое определение молибдена в сплавах на основе титана

Фотометрическое определение титана в алюминии

Фотометрическое определение элементов титана в промышленных материалах

Фотометрическое определение элементов титана и железа в шихте



© 2025 chem21.info Реклама на сайте