Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача полых

    На основе полученных выходных кривых по основному уравнению массопередачи определяли коэффициент массопередачи . Полу ченные значения для ряда опытов на анионите АВ-17 приведены в таблице. [c.96]

    Наиболее полные экспериментальные исследования процесса массообмена в полых распылительных скрубберах было проведено Фиалковым с соавторами [363, 367-371]. Целью исследований был подбор типа форсунок и их расположение в колонне, величина плотности орошения и скорости воздуха при условии ограниченного гидравлического сопротивления аппарата, а также получение эмпирической формулы для расчета скруббера. Проводилась очистка воздуха от HF, СЬ, SOj водой, содовым и щелочными растворами и растворами кислот. При обработке экспериментальных данных определялся объемный коэффициент массопередачи -К а эквивалентного колонного аппарата, работающего в режиме идеального вытеснения при постоянстве по высоте колонны. При этом предполагалось, что равновесная концентрация с на границе раздела газ—жидкость равна нулю. Это допущение применимо лишь для очень хорошо растворимых газов. В соответствии с уравнением (5.4) экспериментальное значение объемного коэффициента массопередачи рассчитьшалось по формуле [c.250]


    Рассмотрим процесс хемосорбции в случае, когда экстрагируемый компонент вступает в химическую реакцию в объеме дисперсной фазы. Поле скоростей для течения внутри капли определим формулами Адамара - Рыбчинского, полученными для Кё<1. В гл. 1 показано, что даже при Яе<100 картина течения внутри капли меняется незначительно. Исследования по массо- и теплообмену (см. раздел 4.2) показали, что для средних Яе экспериментальные значения коэффициентов массопередачи находятся в удовлетворительном соответствии с данными теоретических расчетов, выполненных для Яе<1. Подобных же результатов следует ожидать и в случае диффузии, осложненной химической реакцией, протекающей в объеме дисперсной фазы. [c.276]

    Характерной особенностью работ, посвященных повышению эффективности улавливания пыли в полых колоппах, является стремление обеспечить достаточно густое заполнение всего объема аппарата каплями диспергированной жидкости, причем одновременно стремятся избежать слияния капель в сплошной поток [100]. По данным этой работы, наиболее эффективны равномерно распределенные крупные капли = = 0,8- 1,0 мм при их объемной концентрации около 17о-Можно отметить, что и в модельных опытах по абсорбции хорошо растворимых газов при подобных условиях достигались очень высокие коэффициенты массопередачи. [c.186]

    Воздействие химической реакции на равновесное распределение переходящего компонента между фазами учитывается при вычислении общей движущей силы массопередачи. Влиянием потока химической реакции на поток массы, как правило, пренебрегают. Таким образом, при определении коэффициентов массопередачи учет влияния химической реакции сводится к учету изменения потока массы из-за непосредственного изменения поля концентрации. Однако если скорость процесса массопередачи лимитируется сопротивлением транспортной фазы, то воздействие химической реакции на распределение концентрации переходящего компонента в реакционной фазе не может привести к изменению скорости массопередачи. Поэтому химическая реакция оказывает воздействие на скорость массопередачи только в том случае, когда скорость массопередачи лимитируется сопротивлением реакционной фазы. [c.227]

    Когда механизм массопередачи в полой колонне определяется лимитирующим сопротивлением дисперсной фазы, процесс имеет в общем случае нестационарный характер, что подтверждается рядом экспериментов [И, 30—33]. Это в значительной мере определяет низкую эффективность массо- и теплообмена между фазами в барботажных и распылительных колоннах. [c.248]


    Влияние неравномерности распределения скоростей потока по сечению на эффективность работы аппаратов обусловлено тем, что коэффициенты эффективности (коэффициенты тепло- и массопередачи, очистки и т. п.) находятся не в прямой пропорциональной зависимости от скорости протекания рабочей с )еды. Следовательно, при неравномерном поле скоростей, когда каждому элементу поперечного сечения аппарата соответствует некоторое локальное значение коэффициента эффективности, средний (истинный) коэффициент эффективности аппарата будет отличаться от коэффициента эффективности при равномерном поле скоростей. [c.56]

    Эффективность процесса массопередачи связана с движением потоков на тарелке. Характер концентрационных полей на ступе- и разделения может быть отражен одной из известных гидродинамических моделей полного вытеснения, полного перемешивания или промежуточного типа. [c.75]

    Наиболее точные данные о структуре потоков можно было бы получить путем непосредственного измерения скоростей во многих точках внутри аппарата или его модели. Однако выполнение таких измерений для аппаратов сложной конструкции представляет собой весьма трудную и дорогостоящую, а часто и практически неосуществимую задачу. Кроме того, даже в случае установления полной картины распределения потока в аппарате не всегда удается на практике использовать эти данные для расчета проводимого в аппарате процесса. Вследствие того что скорость является функцией всех координат, уравнения, характеризующие поле скоростей, сложны, и часто их решение в совокупности с уравнениями для скоростей тепло- и массопередачи и химических реакций невозможно или сильно затруднено. [c.118]

    Обычно в экстракторах для создания возможно большей поверхности контакта фаз и, соответственно, для увеличения скорости массопередачи одна из жидкостей (дисперсная фаза) распределяется в другой жидкости (сплошная фаза) в виде капель. В зависимости от источника энергии, используемой для диспергирования одной фазы в другой и перемешивания фаз, экстракторы каждой из указанных выше групп могут быть подразделены на аппараты, в которых диспергирование осу-н ествляется за счет собственной энергии потоков (без введения дополнительной энергии извне), и аппараты с введением внешней энергии во взаимодействующие жидкости. Эта энергия подводится посредством механических мешалок, сообщения колебаний определенной амплитуды и частоты (пульсаций или вибраций), путем проведения экстракции в поле центробежных сил и другими способами. [c.538]

    Основной недостаток полых абсорберов—невысокая эффективность, обусловленная перемешиванием газа и плохим заполнением объема факелом распыленной жидкости. В результате объемный коэффициент массопередачи и число единиц переноса в этих аппаратах невелики скорость газа в них должна быть низкой (до [c.619]

    Массопередача в полых абсорберах [c.624]

    Влияние различных факторов на массопередачу в полых распыливающих абсорберах. Объемный коэффициент массопередачи в полых абсорберах зависит от величины поверхностного коэффициента, определяемого массопередачей для капель, и от поверхности контакта, рассчитываемой по уравнению (УП1-7). [c.627]

    Методически более правильным расчетом ректификационных аппаратов является расчет, основанный на законах массопередачи с учетом закономерностей, характеризующих реальные поля концентраций на тарелке. [c.91]

    Диализ проводят в мембранных аппаратах, в основном плоскокамерного типа, а также в аппаратах с полыми волокнами. В этом случае количество вещества М, проходящего через мембрану, может быть определено по уравнению массопередачи  [c.335]

    На рис. IV. 19 представлены в качестве примера результаты расчета процесса дегазации под вакуумом растворов полиокса-зола в серной кислоте. Эти результаты интересно сравнить с результатами для других типов растворов, в частности, поли-амидокислоты в диметилацетамиде. Из сравнения рис. IV. 19 с рис. IV. 12, IV. 16 и IV. 17 видно, что I период в одном случае заканчивается через 40—60 мин, в другом — через 3—5 мин. Такое различие объясняется значением коэффициента массопередачи газа в исследуемой жидкости в данном случае они отличаются в 25—30 раз. Продолжительность II периода легко объясняется с позиций рассмотрения механизма явлений, происходящих в агрегативно-неустойчивых и агрегативно-устойчивых газожидкостных системах. [c.146]

    Молекула, которая находится в середине газового потока, будь то в насадочной или капиллярной колонке, может получить доступ к неподвижной фазе только в результате диффузии через газовый поток. В случае полой капиллярной колонки Голей строго доказал, что вклад, обусловливаемый этим явлением, называемым сопротивлением массопередаче, определяется выражением [4] [c.123]

    Для полых капиллярных колонок применяется то же самое уравнение, но теперь у равняется единице, а Л — нулю. С определяется зависящей от к частью члена, учитывающего вкла,1 сопротивления массопередаче в газовой фазе, уравнения Голея (уравнение (21)). Для к = д> он равняется 0,0768. С увеличением к он увеличивается от 0,0104 (к = 0) до 0.115 к бесконечно велико). [c.140]


    Эффективность работы ферментатора определяется прежде всего необходимой интенсивностью перемешивания Перемешивающие устройства служат для сохранения равномерного температурного поля по всему объему аппарата, своевременного подвода продуктов питания к клеткам и отвода от них продуктов метаболизма, а также интенсификации массопередачи кислорода [c.303]

    Эффективность массопередачи и поле концентраций компонентов в потоках газа и жидкости в перекрестном токе изучаются при следующих упрощающих допущениях высота вспененного слоя жидкости и скорость движения жидкости постоянны по длине тарелки пар равномерно распределяется по сечению тарелки и поступает на контактное устройство полностью перемешанным, т. е. одинакового состава в пределах изменения концентраций потоков на одной тарелке зависимость между равновесными составами имеет линейный характер. [c.212]

    В известных монографиях по вопросам ректификации [7], [13] и главах, посвященных этому процессу в книгах по процессам и аппаратам химической технологии [14], [15], расчет ректификационных колонн излагается обычно с позиций метода сравнения (с использованием понятия о теоретической тарелке) [13], или с позиции концентрационной диффузии [15]. Учитывая наметившуюся в последнее время тенденцию привлечения термодинамики необратимых процессов к описанию движущей силы процесса массопередачи в условиях ректификации [10] и возможность расчета полей параметров движущей силы в условиях перекрестного тока [c.5]

    В конечном итоге движущая сила процесса массопередачи определится наличием полей химического потенциала и температуры. В этом случае поток массы может быть выражен уравнением линейности термодинамики необратимых процессов [40]  [c.68]

    Для процессов массопередачи, протекающих в подвижных средах, стадии массоотдачи 1 и 3 определяются физическими свойствами фаз, условиями их движения и описываются уравнениями конвективного переноса вещества (1.147). Условия перехода молекул переносимого компонента через границу раздела между фазами определяются особым состоянием молекул компонентов на границе раздела фаз. Под действием силовых полей молекулы принимают здесь ориентированное положение, т. е. возникает явление, называемое адсорбцией. В результате этого со стороны каждой фазы вблизи поверхности раздела образуются слои ориентированных молекул (адсорбционные слои), чрезвычайно малой толщины (порядка нескольких десятков размеров молекул). Так, в системе, состоящей из двух жидких фаз, имеются, строго говоря, не две, а четыре фазы — две объемные (занимающие макроскопические объемы) и две поверхностные (занимающие микроскопические объемы вблизи границы раздела фаз). Можно считать, что в системах типа жидкость (газ) — твердое тело имеется одна поверхностная фаза, поскольку из-за фиксированного положения молекул в твердых телах адсорбционные слои в них не образуются. Обычно считают, что наиболее медленной стадией процесса массопередачи (массообмена) является перенос в объеме фазы. [c.403]

    Следует, одпако, отметить, что скорость насыщения капли газом падает с ростом т. Кроме того, даже в иред-положении моподиспсрсного состава капель факела дей-ствтсльная интенсивность массопередачи в полой колоппе меньше ожидаемой ио формуле (86) вследствие различия между принятой моделью взаимодействия фаз и фактической обстановкой в колонне, возникающей ири разбрызгивании жидкости форсунками. [c.184]

    Особенно резко влияние увелнчеппя Шг па интенсивность массопередачи сказывается при переходе к весьма большим (с точки зрения возможного упоса брызг из полой колонны) значениям ес г = 5- 8 м/с, что и привело к появлению полых колонн скоростного типа [18, 75], эффективно применяемых прн очистке больших количеств от.кодящего газа (порядка сотен тысяч кубометров в час) от х.тора, хлористого водорода и соединений фтора в производствах цветной. металлургии и алюминия (см. рис. 66, а и б). [c.195]

    При такой постановке вопроса слой жидкости в отношении массообмена можно рассматривать как тонкое тело, если Р/М имеет высокое значение, и как массивное тело, если значения Р/М малы. Многофазная зона технологического процесса может отличаться крайне неоднородным полем коэффициентов массопро-водности и массопередачи, но влияние этой неоднородности на процесс массообмена в целом будет тем меньше, чем больше Р/М, т. е. чем тоньше жидкое тело в смысле массообмена. Учитывая это, различные варианты воздействия газовой фазы на жидкую в отношении массообмена можно оценивать исходя из того, как велика достигаемая при этом удельная поверхность раздела фаз Р/М. [c.172]

    Полый распыливающий абсорбер (рис. Х1-28) представляет собой колонну, в верхней части корпуса / которой имеются форсунки 2 для распыливания жидкости (главным образом механические). В распылива-ющих абсорберах объемные коэффициенты массопередачи быстро снижаются по мере удаления от форсунок вследствие коалесценции капель и уменьшения поверхности фазового контакта. Поэтому оросители (форсунки) в этих аппаратах обычно устанавливают на нескольких уровнях. [c.457]

    Описано [214] применение абсорберов с деревянной хордовой насадкой для водного поглощения Sip4. При приведенной скорости газа 1,92 м сек и плотности орошения И м ч коэффициент массопередачи составляет 59 кмоль-м -ч -бар . Из трех последовательно соединенных по газу башен забивание насадки гелем SiOa наблюдалось лишь в первой башне, которая была затем переделана на полую. Содержание Sip4 в поступающем газе составляет [c.479]

    Опыты ПО абсорбции NH3 в роторах с разными углами а [57] показали, что при углах 150 и 180° коэффициенты массопередачи одинаковые при а=120° кривая зависимости /Ср от w идет более полого, причем если ш<2,5 м/сек, коэффициент массопередачи выше, а при ш>2,5 м/сек ниже, чем для роторов с а=150и180°. [c.648]

    Преобразуя (4) с использованием выражений (1,2), пол учено уравнение массопередачи [c.113]

    Наиб, перспективные пути интенсификации массообменных процессов-использование явлений самоорганизации на межфазной пов-сти (напр., в результате возникновения локальных градиентов поверхностного натяжения), организованная нестациопарность массопередачи, воздействие пульсаций и вибраций, звуковых и ультразвуковых колебаний, электрич. и магн. полей, разработка новых гидродинамич. режимов и направленное совмещение хим. и массообменных процессов. [c.658]

    Диализ-разделение растворенных в-в, различающихся мол массами Процесс основан на неодинаковых скоростях диффузии этих в-в через проницаемую мембрану, разделяющую конц и разб р-ры Под действием градиента концентрации растворенные в-ва с разными скоростями диффундируют через мембрану в сторону разб р-ра Скорость переноса в-в снижается вследствие диффузии р-рителя (обычно воды) в обратном направлении Для диализа используют, как правило, нитро- и ацетатцеллюлозные мембраны Площадь их пов-сти рассчитывается из ур-ния F = K FA /V, где V-кол-во пермеата, Дс-разность концентраций в-ва по обе стороны мембраны, т е движущая сила процесса, = (1/Pi + h/D + 1/Р2) -коэф массопередачи, или диализа, определяемый экспериментально, причем и Pj-соотв коэф скорости переноса в-ва в конц р-ре к перегородке н от нее в разб р-ре, 5-толщина мембраны, D - коэф диффузии растворенного в-ва Процесс используют в произ-ве искусственных волокон (отделение отжимной щелочи от гемицеллюлозы), ряда биохим. препаратов, для очистки р-ров биологически активных в-в Мембранные аппараты подразделяют на плоскокамерные, трубчатые, рулонные, с полыми волокнами, а также электродиализаторы (см выше) В плоскокамерных аппаратах (рис 3) разделительный элемент состоит из двух плоских [c.26]

    Концепция хаоса также вовлекается в арсенал совр. методов Х.Т., поскольку условия возникновения хаотич. поведения - многомерность полей физ. величин, пульсационные явления, налагающиеся эффекты - часто встречаются в хим. ехнол. системах. Так, модели массопередачи, как правило, имеют стохастико-детерминированный характер. [c.241]

    Развитие поверхности жидкой фазы за счет диспергирования, т. е. разбрызгивания, распыления ее пневматическим или механическим способом в объеме или потоке газа, проходящего через полую камеру или бащню. Соответствующие аппараты называются бащнями с разбрызгиванием или камерами с распылением жидкости. Площадь соприкосновения Р равна поверхности всех капель, на которых и происходит массопередача, называемая капельной. Такие бащни могут работать интенсивнее насадоч-ных, но вследствие трудности иостоянного тонкого распыления жидкости они не устойчивы в работе и мало применяются в про-мыщленности. [c.75]

    Часто такой же массообмен осуш ествляется в других аппаратах, главным образом в колонных, в процессах абсорбции, ректификации и экстракции. В настоящее время для колонных аппаратов выполнено очень большое количество экспериментальных исследований, целью которых было определение коэффициентов массоотдачи и массопередачи, а также получение корреляционных уравнений для вычисления этих коэффициентов. К сожалению, полученные уравнения нельзя использовать для аппаратов с мешалками, так как они действуют иначе, чем полочные аппараты. На полке колонны перемешивание жидкости происходит благодаря кинетической энергии движущегося потока, например газа, в то время как в аппарате с мешалкой перемешивание обусловлено подводом механической энергии извне с помощью мешалки. Диспергирование одной из фаз в аппарате с мешалкой также протекает иначе. В колонне это обычно происходит на соответствующим образом перфорированной перегородке (полке), тогда как в аппарате с мешалкой — в основном благодаря работе мешалки. Дополнительную трудность представляет определение скорости фаз в аппарате с мешалкой. Поле скорости жпдкости здесь очень сложное, и единственной величиной для сравнения в этом случае может служить окружная скорость конца лопаток (лопастей) мешалки. Дополнительную трудность в обобщении экспериментального материала для аппарата с мешалкой вызывает таклче большое количество конструктивных вариантов этих аппаратов. [c.308]

    В настоящее время в технике экстракции все шире применяют ступенчатые центробежные экстракторы. Сочетание в них интенсивных процессов перемешивания растворов в поле силы тяжести и последующего разделения эмульсии в поле центробежной силы дает возможность одновременного достижения высоких значений эффективности массопередачи и удельной производительности. Отмеченные достоинства делают эти экстракторы в некоторых процессах более предпочтительными по сравнению с колонными и смесительно-отстойными экстракционными агша-ратами. [c.165]

    При сравнении учитывали характер поля коидентраций, определяющий движущую силу процесса массообмена и взаимодействие участвующих в процессе массообмена фаз, определяющее коэффициент массопередачи. [c.46]

    Пушленков и Федоров [89] предложили оригинальный метод изучения кинетики массопередачи при малом времени контакта фаз. Контакт фаз осуществляется в момент, когда капля органической фазы, оторвавшаяся от капилляра, попадает на поверхность водной фазы. В момент соприкосновения начинается процесс массопередачи вещества из органической фазы (реэкстракция). Образующиеся в воде ионы быстро отводятся от границы раздела фаз с помощью электрического поля. На пути продвижения ионов к электродам помещены экраны из ионообменной смолы, на которых происходит обмен образующихся ионов на ионы водорода. Последние, разря- [c.395]

    В теории тепломассопереноса существует достаточно развитое теоретическое направление, априори рассматривающее процессы переноса внутри капли при больших числах Пекле в рамках модели диффузионного пограничного слоя (см, [12, 37]). И в этом случае наличие циркуляционного течения приводит к существенным особенностям картины массопереноса внутри капель. Поэтому задача определения массопереноса может решаться только с использованием модели нестационарного пограничного слоя. Схема течения и структура поля концентраций в этом случае представлены на рис. 5.3.3.4 [37]. Механизм переноса вещества в капле в соответствии с [37] выглядит следующим образом. В течение короткого начального периода процесса растворенное вещество с достаточно большой скоростью переносится из внутреннего пограничного слоя к поверхности капли. Однако скорость этого процесса быстро падает за счет обеднения внутреннего пограничного слоя растворенньпи компонентом вследствие существенно более низкой скорости поступления вещества нз ядра потока (зоны бс)- При этом процесс массопередачи выходит на ста- [c.283]

    Были предприняты попытки у.меньшпть сопротивление массопередаче через поток газа-носителя посредством свертывания полой капиллярной колонки в спираль малого диаметра [22, 23]. Это активизирует радиальный вторичный поток. Под напряжением вследствие влияния инерции газ, который находится в центре трубки, стремится вытекать по направлению к наружной стенке. Развивается вторичная циркуляция, и появляются две вращающиеся ячейки, по одной ячейке на каждой стороне плоскости, перпендикулярной оси спирали и проходящей через центр поперечного сечения трубки. Этот радиальный поток активизирует перемешивание газовой фазы и заметно уменьшает дисперсию неудерживаемого вещества. Одпако удерживаемые вещества должны по-прежнему диффундировать через сечение всей трубки, а это занимает время [22]. Зависимость сопротивления массопередаче в газовом потоке от к очень велика, и, по-видимому, для удерживаемых соединений (т. е. для соединений, которые мы желаем разделить) значительного по- [c.124]

    Из-за второго члена уравнения (24) (см. в целом уравнения (21), (23) и (24)) форма кривой зависи юсти высоты тарелки от линейной скорости газа-носителя для насадочной колонки намного более сложна, чем для полой капиллярной колонки, даже когда коэффициент сопротивления массопередаче в неподвижной фя- е пренебрежимо мал. При очсиь низких скоростях газа-носителя, когда в знаменателе второго члена урав- [c.134]


Смотреть страницы где упоминается термин Массопередача полых: [c.381]    [c.184]    [c.285]    [c.309]    [c.80]    [c.65]    [c.12]   
Абсорбция газов (1966) -- [ c.624 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача в полых абсорберах

Массопередача массопередачи



© 2024 chem21.info Реклама на сайте