Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термопласты применение

    Полипропилен благодаря ряду ценных свойств, не присущих ранее известным термопластам, активно вытесняет многие виды полимеров и находит все новые области применения. Ниже сравни- [c.301]

    Наибольшее применение находят стеклопластики на основе ненасыщенных полиэфирмалеинатных смол ПН-15, ПН-16 и на основе композиции смол ПН-10 и ПН-69, Максимально допустимая температура эксплуатации полиэфирных стеклопластиков в агрессивных средах приведена в табл. 6.3. Для плавиковой кислоты и фторидов аммония армирование первого футеровочного слоя выполняют из нетканого материала на основе лавсановых или пропиленовых волокон. Химическая стойкость бипластмасс определяется свойствами термопласта (см. 6.3), [c.99]


    Этот пластик производится в больших количествах и поступает в продажу под названием ТРХ. Плотность его 0,83 г/см , ниже чем у всех известных термопластов, температура плавления 240 °С. Изготовленные из этого материала прессованные детали сохраняют стабильность формы прп температуре до 200 °С. Кроме того, пластик ТРХ прозрачен. Светопроницаемость достигает 90%, т. е. несколько меньше, чем у плексигласа (у полиметилметакрилата 92%). Недостатком является деструкция под действием света. Поэтому нестаби-лизировапный ТРХ пригоден только для применения в закрытых помещениях. Этот материал стоек ко многим химическим средам, сильные кислоты и щелочи не разрушают его, однако он растворяется в некоторых органических растворителях, например в бензоле, четыреххлористом углероде и петролейном эфире. Ударная прочность нового термопласта такая же, как у высокоударопрочного полистирола. Диэлектрические свойства тоже хорошие (диэлектрическая ироницаемость 2,12). [c.236]

    Применение полимеров. В настоящее время широко применяется большое число различных полимеров. Физические свойства некоторых термопластов приведены в табл. Х1П.1. [c.365]

    ПРИМЕНЕНИЕ НЕФТЕПОЛИМЕРНЫХ СМОЛ ДЛЯ ПРОИЗВОДСТВА ТЕРМОПЛАСТА ДЛЯ ГОРИЗОНТАЛЬНОЙ РАЗМЕТКИ АВТОМОБИЛЬНЫХ [c.175]

    При сварке элементов конструкций исчезает граница раздела между соединяемыми пов-стями и образуется структурный переходный слой от одного объема П. м. к другому, что обеспечивает создание неразъемных соединений. Сварка П. м. может осуществляться с применением конвекционного нагрева, токов высокой частоты, ультразвука, трения, под действием ИК и лазерного излучения. Прочность соединения зависит от возникающих в переходном слое сил межатомного и межмол. взаимодействия. При сварке термопластов переходный слой образуется при нагреве или при действии р-рителя в результате взаимной диффузии макромолекул П. м., находящихся в вязкотекучем состоянии. При сварке реактопластов соединение осуществляется вследствие хим. взаимодействия макромолекул соединяемых материалов между собой или со сшивающим агентом, вводимым в зону сварки (т. наз. хим. сварка). [c.13]

    Для первого этапа, в случае применения типовых червяков 1 = В) при переработке термопластов предложена следующая методика расчета. [c.339]

    Полиамиды как промышленные термопласты появились после второй мировой войны вслед за их успешным применением в военные годы в текстильной промышленности. Многотоннажное производство полиамидов стало возможным главным образом благодаря применению методов переработки и технологического оборудования, уже используемого для других термопластов, а также благодаря относительно низкой стоимости сырья. Удивительные свойства полиамидов быстро обеспечили им широкое использование. [c.9]


    Пластическая деформация термопластов способствует возникновению при охлаждении термических напряжений за счет различий в коэффициентах линейного расширения и особенно кристаллизации термопласта. Последнее обстоятельство вызывает необходимость более жесткого контроля скорости охлаждения изделий после формования. При медленном охлаждении образуются крупные сферолиты, которые снижают прочность. Возможность быстрого охлаждения является одним из преимуществ применения термопластического связующего. [c.553]

    В установившихся режимах течения поведение различных полимеров целесообразно сравнивать в условиях, когда т)->т1о. При этом за меру изменения структуры полимеров принимается отношение т1/т]о при данных значениях напряжения и скорости сдвига (когда процесс течения описывается уравнением Ньютона Р = г оу). В эквивалентных состояниях полимеры могут находиться как при одинаковых значениях произведения ут о, так и при одинаковых Р. Возможность использования метода универсальной температурно-инвариантной характеристики вязкости упрощает измерения в широких диапазонах температур, скоростей и напряжений сдвига, позволяя однозначно характеризовать состояние полимеров при установившихся режимах течения. Следует отметить, что эффективное применение данного метода для характеристики вязкостных свойств полимерных систем разных видов (термопластов, эластомеров) ограничивается их состоянием, в котором при разных напряжениях и скоростях сдвига вязкость т] т]о. [c.160]

    Классификация, исходя из которой устанавливается разделение полиамидов по областям их применения, базируется на их основных свойствах — механических, электрических и химических. Прежде всего целесообразно обобщить те особенности свойств полиамидов, которые отличают их от других термопластов. Эти особенности перечислены в табл. 5.1. [c.217]

    Формы для литья под давлением с автоматическим вывинчиванием резьбовых знаков. Из различных конструкции изделий из термопластов особую группу составляют изделия с резьбовыми отверстиями. Изготовление таких изделий требует применения оснастки со сложной системой извлечения резьбовых знаков. Большое разнообразие и отсутствие систематизации оснастки затрудняют выбор оптимальной конструкции формы. В связи с этим не всегда оправданно используют формы кассетного типа и формы с вывинчиванием знаков вручную непосредственно в форме. Такие формы эффективны в мелкосерийном производстве, но не в массовом. [c.268]

    Область применения САПР Пластик . Систему можно использовать в различных отраслях промышленности, изготовляющих литьевые изделия из термопластов. [c.372]

    Приведенные области применения ПИБ и его производных далеко не исчерпывают их возможностей. Известны многочисленные примеры композиций термопластов и эластомеров различного назначения, в которых ПИБ используется в качестве технологической добавки, улучшающей переработку и отдельные свойства материалов. Варьирование молекулярных масс или характера функциональности обеспечивает технологический или более высокий уровень совместимости ПИБ с компонентами композиций, что определяет улучшенное качество изделий. [c.374]

    Пленки из поликарбонатов, предназначенные для производства упаковочных материалов [22], по экономическим соображениям, как правило, получают формованием из расплава. Такая пленка оптически прозрачна, имеет стабильные размеры, хорошие механические и электрические свойства, термо- и водостойка. Она не имеет ни вкуса, ни запаха, непроницаема для масел, жиров и бактерий и физиологически инертна ее можно стерилизовать и легко склеить раствором самого поликарбоната в растворителе или же соединить горячим прессованием. Однако высокая стоимость пленки ограничивает ее широкое применение для упаковки и ее используют только в особых случаях, когда пленки из более дешевых термопластов не удовлетворяют нужным требованиям, например, если упакованные предметы под- [c.285]

    Наиболее перспективным материалом для изготовления аппаратов (реакционны.х и емкостных, скрубберов, насадочпых колонн), устойчивых к дс11ствию 0 )1 апических растворителей (хлор-бсп.зо, К1, анилина и др.), органических и неорганических кислот (5—37%-ной уксусной ледяной), являются стеклопластики. Колонны из стеклопластика, плакированного термопластами, К КО-мендуют для широкого применения в условиях агрессивных сред ра.. личных производств. [c.68]

    Размер гранул зависит от вида материала, способа его дальнейшей переработки и применения и составляет обычно (в мм) в для минеральных удобрений — 1-4 в для термопластов — 2-5  [c.320]

    Полиамиды обладают повышенной по сравнению с другими термопластами гигроскопичностью. Некоторые полиамиды могут поглощать из окружающей среды до 10% (масс.) воды. Это вызывает осложнения при переработке и применении полиамидов, поскольку наличие влаги в полимере влияет не только на большинство его свойств, но и на стабильность размеров изделия. [c.135]

    Политрифторхлорэтилен можно перерабатывать в изделия прессованием, литьем под давлением, экструзией и другими обычными для термопластов методами. Низкая текучесть, необходимость применения повышенных температур и возможность структурных изменений в процессе переработки требуют точного соблюдения температурного режима процесса. Литье и прессование рекомендуется проводить при удельном давлении 150 МПа, температуре 240—300 С. [c.120]


    Основным преимуществом вакуумформования является простота установки и возможность визуального наблюдения за процессом. Однако небольшой перепад давления препятствует применению этого метода для получения толстостенных и сложных по конфигурации изделии, а также изделий из жестких термопластов. В этих случаях пользуются методом пневмоформования. [c.297]

    Основными областями применения описываемого пластикатора являются процессы смешения и гомогенизации при подготовке композиций на основе термопластов и эластомеров. [c.124]

    Характерной особенностью литьевых машин марки Термо-Сеттер является обогрев цилиндра жидким теплоносителем (обычно рекомендуется применять горячую воду или масло) вместо электрического обогрева, используемого в литьевых машинах для термопластов. Применение жидкого теплоносителя позволяет получить более равномерное распределение температур в пластпцированном материале по сравнению с электрическим обогревом. [c.104]

    Ведун1ее место в промышленности пластмасс США занимают термопласты, однако специфические свойства реактопластов на основе полиэфирных, эпоксидных, полиуретановых и других смол обеспечивают им широкое применение в различных отраслях промышленности. [c.166]

    Самые различные термопласты пригодны для порошкового формования, среди пих наибольшее применение находят поливинилхлорид, полиэтилен и его сополимеры. Большинство порошков имеет частицы диаметром 0,5—0,7 мм и производится на машинах фирмы Pallman Pulverizer o., производительность которых составляет 45—135 кг ч. Стоимость порошкового материала несколько выше стоимости гранулированных термопластов, однако в целом стоимость изде- [c.191]

    Вопросам подготовки поверхности для нанесения покрытия уделяется большое внимание. В США разработан и применен метод соединения полиэтилена с алюминием при помощи промежуточного мономолекуляр-ного слоя другого вещества. В данном методе применяют органическую кислоту с длинной углеводородной цепью (стеариновую), которая образует химическую связь с металлом и физическую с термопластом стеариновая кислота своей карбоксильной группой с металлом образует стеариты, а ее углеводородная часть внедряется в полиэтилен. Такой промежуточный слой обеспечивает прочное сцепление полиэтилена с алюминием. Широкое применение в антикоррозионной защите в последнее время нашли покрытия из хлорированного полиэфира. [c.223]

    Более рационально использование для модификации неокисленных битумов термопластов. Вязкости битума и термопластов при температуре, требуемой для производства эмульсии, примерно одного порядка, и процесс диспергирования протекает достаточно легко. При применении таких эмульсий получают покрытие высокой прочности и износоустойчивости. [c.40]

    В связи с изучением зависимости энергии поверхности разрушения от скорости нагружения следует напомнить о первых широких применениях испытания на раздир (метод III) (например, [5, 23—28]). При таком виде разрушения материал в области вершины трещины испытывает сложное в значительной степени пластическое деформирование. Не вдаваясь в подробности, МОЖНО отметить, что скорость влияет на степень пластического деформирования (а следовательно, и на поверхность разрушения или энергию раздира) [23—29]. Это влияние связано с максимумами р- и v-релаксацни [5, 23—26]. Как правило, энергии раздира термопластов и каучуков довольно велики, например, для ПС энергия раздира 1 кДж/м , для ПЭ 20—200 кДж/м2, а для различных сополимеров бутадиена 0,1—500 кДж/м [24—26]. Относительно эластомеров Томас [27], а также Ахагон и Джент [28] сообщают, что после введения поправки, учитывающей изменение эффективной площади разрушения, для различных условий эксперимента можно получить общее пороговое значение энергии разрушения То, равное 40—80 Дж/м . Показано, что данная энергия не зависит от температуры и степени набухания в различных жидкостях. Пороговая энергия незначительно убывала с увеличением степени сшивки (образцов полибутадиена). В агрессивной среде (кислород, озон) То существенно уменьшается. [c.357]

    Полученные данные свидетельствуют о перспективности применения УНМ для наполнения конструкционньгх термопластов. [c.166]

    Феноло-формальдегидные олигомеры и полимеры очень широко применяются в различных отраслях техники, особенно в электротехнике и приборостроении. В СССР выпускается более 20 марок олигомеров ново-лачного и резольного типа. Увеличивается также производство и расширяются области применения модифицированных феноло-формальде-гидных олигомеров и полимеров для лаков и клеев. Для их модификации используются нитрильные каучуки, полиамиды, поливинилхлорид, поли-винилацетали, эпоксидные, кремнийорганические и другие полимеры. Совмещенные материалы обычно обладают улучшенным комплексом технологических и физико-механических свойств. Продукты конденсации фенолов с формальдегидом, способные отверждаться при повышенных температурах, называют реактопластами в отличие от термопластов, не изменяющих своих свойств при нагревании. [c.9]

    Толипропилен, в особенности пленка из него, обладает всеми необходимыми свойствами для применения в этой области. По своим характеристикам полипропиленовая пленка близка к полиэтиленовой, причем по некоторым показателям превосходит ее. По сравнению с пленками нз других термопластов полипропиленовая пленка имеет преимущество в отношении стойкости к нагреванию и действию химических реагентов (она может быть подвергнута стерилизации при температуре-выше 100 С, что определяет целесообразность ее использования в пищевой и фармацевтической промышленности). Ее достоинствами являются также превосходная [c.293]

    Переработка и применение. П. перерабатывают всеми известными для термопластов способами, однако гл. обр.-экструзией и литьем под давлением (см. Полимерных материалов переработка) при 230-310 С. Выбор т-ры переработки определяется вязкостью материала, конструкцией изделия и выбранным циклом литья. Давление при литье 100-140 МПа, литьевую форму подогревают до 90-120 С. Для предотвра-щешя деструкции при т-рах переработки П. предварительно сушат в вакууме при 115 5 С до содержания влаги не более 0,02%. [c.631]

    Наиб, применение находит хлориров. НК - собственно хлоркаучук [ ioHii l7] - белый термопласт мол.м. 100000, содержание хлора 65-70% плотн. 1,63-1,66 г/см т-ра размягч. 70 °С образует прозрачные пленки до [c.287]

    Кардовые полиарилаты фенолфталеина, фенолфлуорена, феиолантрона термопластичны. Их можно перерабатывать обычными для термопластов методами, что в сочетании с их высокой термостойкостью обуславливает широкие возможности применения этих полимеров для изготовления конструкционных изделий. Благодаря хорошим диэлектрическим свойствам они могут успешно применяться в радио- и электротехнике. На основе полиарилатов получают наполненные материалы, в том числе и антифрикционные, которые обладают низким коэффициентом трения и могут длительно работать без смазки в условиях высоких температур (250 °С), вакуума и больших градиентов скоростей между трущимися поверхностями (подшипники скольжения и качения). [c.113]

    В последние годы началось широкое применение термопластичных высокотеплостойких полимеров в качестве матриц для волокнистых ПКМ. Для термопластов характерно сочетание высоких прочности и теплостойкости [суперконструкционные пластики (рис. 11.2)] с высокими ударной прочностью, трещинностойкостью [c.136]

    Искусственные кожи - широкий класс ПКМ (в основном органопластики), при.меняемый для изготовления обуви, одежды, головных уборов, га.лантереи, а также многочисленных. материалов и изделий технического назначения, признанньо восполнить дефицит натура.льного сьфья Как отмечалось, в последние годы широко исследуются композиты, где в качестве армирующего элемента выступают микро- и наночастицы, напрймер, магнитопласты, изготовленные из порошка высококоэрцитивных сильных магщп-ньк материалов, таких как ЗтСо и Мс1-Ре-В с диэлектрически.м полимерным связующим (термопласт). Такие. материалы обладают сильным текстурированием в магнитном поле и могут найти широкое применение при разработке и создании новых приборов микроэлектроники. [c.145]

    В настоящее время изделия из пластмасс различаются по размерам, форме и массе в очень широких пределах —от литьевых деталей с массой в доли грамма до крупногабаритных изделий, масса которых измеряется тоннами. Разнообразие размеров, конструкций и форм изделий, а также используемых для их изготовления материалоз определяют применение различных методов переработки пластмасс. Например, если для производства мелких деталей из термопластов массовыми тиражами наиболее производительным и рентабельным является литье под давлением, то для крупных тонк-остенных изделий типа ванн более удобными и рентабельным является пневмо- и вакуумформование, а для крупных массивных изделий — горячее прессование или контактное формование. [c.273]

    Важнейшими областями применения являются процессы смешения и гомогенизации при подготовке термопластов и удаление летучих компонен гов из термопластов и эластомеров. Применение зтих машин в качестве шнековых испарителей описано в разделе 3.7.1. [c.119]

    Применение. Двухшнековые машпны тппа DSM применяют ючтд исключительно для подготовки композиций на основе термопластов. В качестве типичных примеров следует упомянуть процессы "омогенизации и окрашивания полиэтиленов высокого и низкого давления (соответственно низкой и высокой плотности) или полипро-зилена, гранулирования пластифицированного ПВХ, загрузки каландров пластифицированным или жестким ПВХ, сплавления ( легирования ) различных термопластов друг с другом и регенерации (вторичной переработки) отходов пластмасс. В табл. 22 приведены данные по производительности двух моделей машин DSM для различных термопластов и технологических процессов [66]. [c.124]

    При переработке термопластов на разгрузочном конце машины могут устанавливаться фильтрующие устройства со сменными сетками для удаления посторонних включений. Разгрузочные узлы представляют собой обычно решетки и фильеры для холодной штранг-грануляцпн или горячей резки жгутов на плоскости формующей решетки. При применении технологии так называемой горячей грануляции могут использоваться системы воздушного, водокольцевого охлаждения или устройства для подводной грануляции. [c.136]


Смотреть страницы где упоминается термин Термопласты применение: [c.8]    [c.98]    [c.98]    [c.295]    [c.182]    [c.176]    [c.557]    [c.161]    [c.194]    [c.606]    [c.511]   
Общая химическая технология органических веществ (1966) -- [ c.539 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте