Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термопластичные применение

    Свойства и применение полиакрилатов. Полиакрилаты — типичные термопластичные материалы. При определенной темпе- [c.173]

    Высокочастотные установки для нагрева диэлектриков с использованием ламповых генераторов начали применяться в нашей стране более 35 лет тому назад. Первоначально выпускались установки только для нагрева термопластичных материалов, затем их области применения расширились, увеличилась мощность установок, расширился диапазон частот. Появились установки мощностью 63 кВт для сушки литейных стержней с производительностью до 800 кг/ч, разрабатывается генератор мощностью 160 кВт для сушки вискозного шелка с суточной производительностью до 3,5 т. [c.174]


    Полимерные клеи на основе изоцианатов и гидроксилсодержащих соединений (главным образом олигоэфиров). Могут содержать инициаторы отверждения (воду, спирты, водные растворы солей щелочных металлов и карбоновых кислот), порошковые наполнители (оксиды титана и цинка, цемент и др.), растворители (кетоны, спирты, хлорзамещенные углеводороды), добавки полимеров. Они могут быть реактивными и термопластичными. Реактивные могут быть двухупаковочными и одноупаковочными. Двухупаковочные смешивают непосредственно перед применением, жизнеспособность смеси 1-3 ч, смесь отверждается при комнатной температуре в течение не менее 3-6 ч. Основа одноупаковочных клеев - полиуретановый форполимер, содержащий свободные изоцианатные группы. В герметично закрытой емкости они хранятся до 1 года. Быстро отверждаются при комнатной температуре после нанесения на склеиваемые поверхности, адсорбируя влагу с поверхности и из воздуха. Одноупаковочные могут быть в виде растворов или дисперсий. Клеи выпускают в виде жидкостей различной вязкости. Полиуретановые клеи применяют при сборке конструкций из ила- [c.214]

    Смолы, получаемые на основе бифункциональных соединений термопластичны. Применение трифункциональных исходных вешеств приводит к образованию пространственных полимеров— неплавких и нерастворимых. [c.348]

    Тепловая сварка. Значительная часть продукции, полученная термоформованием, используется для различных видов упаковки. Широкое применение термопластичных пленок в качестве упаковочного материала для сыпучих и жидких продуктов послужило толчком к развитию метода тепловой сварки. Упаковка продуктов в тару из термопластичной пленки с последующей сваркой обеспечивает герметичность тары и высокую степень сохранности продукта при хранении и транспортировке. Как в США, так и в Западной Европе, разработано большое количество высокопроизводительных машин для производства пленочной упаковки. Производительность установок, осуществляющих сварку и обрезку, может достигать 100 изделий в час и более. Перс- [c.188]

    Весьма ценными свойствами обладает полимер пропилена — п о л и п р о п и-л е н. Это бесцветный термопластичный материал, без запаха он обладает большой эластичностью и светопроницаемостью. Пленка нз полипропилена прозрачнее, чем полиэтиленовая. Очень перспективно применение полипропилена в производстве товаров широкого потребления. В СССР разработан оригинальный способ полимеризации пропилена. — При.м. редактора.] [c.68]


    Полимеры обладают поразительно удачным сочетанием химических, физических и электрических характеристик, которые обеспечивают наиболее широкую сферу их применения по сравнению со всеми другими видами сырья, известными человечеству. Более того, способность термопластичных полимеров деформироваться при повышенных температурах и термореактивных — до того, как произошло их отверждение, позволяет изготавливать из полимеров множество готовых изделий, имеюш,их иногда очень сложную конфигурацию. [c.12]

    Масштабы использования в производстве углеграфитовых материалов термопластичных связующих несравнимы с применением для этих целей термореактивных полимеров. Это связано не только с относительной дешевизной каменноугольных и нефтяных пеков, но и с тем, что при смешении и на стадиях тепловой обработки до образования полукокса связующее находится [c.137]

    По свойствам, важным для процессов формования изделий я ИК последующего применения, полимеры принято делить на термопластичные и термореактивные. [c.223]

    Полистирол — термопластичный материал с высокими диэлектрическими показателями. Он химически стоек, водостоек и бесцветен, однако имеет низкую механическую прочность и невысокую теплостойкость. В связи с этим модификация свойств полистирола направлена на улучшение его перерабатываемости, повышение его ударопрочности, огне- и атмосферостойкости, прозрачности. Улучшение качества и придание требуемого комплекса свойств полистиролу достигается путем введения в него различных добавок, а также способом химической модификации (блочная и привитая сополимеризация). Получение полистирольных пластиков с новыми качественными характеристиками расширяет сферу их применения в промышленности. [c.376]

    Выпускаемые в настоящее время отечественной промышленностью установки для нагрева диэлектриков и полупроводниковых материалов делятся по назначению на четыре основные группы для сварки термопластичных материалов, для склеивания и сушки древесины, для нагрева таблетированных пресс-порошков при изготовлении изделий из пластмасс, установки общего применения (для нагрева с различными целями разнообразных изделий и материалов). [c.174]

    Другой областью применения полиамидов является производство из них литых изделий, пленок, клеев и т. п. Полиамиды являются термопластичным материалом изделия из них получаются литьем под давлением. Вследствие высокой кристалличности полиамиды в отличие от других термопластических материалов не испытывают постепенного размягчения прн нагревании, но но достижении определенной температуры сразу расплавляются и становятся жидкотекучими. Большая текучесть полиамидов обеспечивает хорошее заполнение пресс-форм. Поэтому полиамиды не требуют высокого давления при прессовании и литье. К недостаткам литьевых материалов относятся малая водостойкость, плохая окрашиваемость и большая усадка — до 16% при литье под давлением [77]. К достоинствам полиамидов как мате--риалов для литья относятся высокая ударная прочность и твердость, хорошая сопротивляемость истиранию и устойчивость при низких температу-. рах. Поэтому полиамиды применяются для изготовления массивных литых, изделий — шестерен, вкладышей для подшипников, вкладышей для муфт, труб и т. п. [10]. [c.671]

    В будущем битумы благодаря своим специфическим свойствам — прочности, термопластичности, водонепроницаемости, стойкости к воздействию атмосферных явлений, плохой проводимости тепла, электричества и звука и другим — найдут еще более широкое и разнообразное применение в народном хозяйстве. [c.393]

    Развивается также способ формования П. в. из расплава полиуретан в этом случае должен быть термопластичным, что достигается применением в качестве удлинителя цепи диолов-этиленгликоля или бутиленгликоля. [c.29]

    При компаундировании асфальтита с термопластичными полимерами полиэтиленом, полистиролом и сополимером этилена с пропиленом получены пластики, которые в 20-40 раз превосходят асфальтиты по диэлектрическим свойствам, что делает перспективными их применение в высокочастотной технике (табл. 105). Преимуществом асфальтовых пластиков является их низкая стоимость, повышенная термостойкость, выражающаяся в более высокой температуре начала разложения компаунда. [c.150]

    В настоящее время полиамиды широко используют для изготовления износостойких деталей подшипников, таких как гладкие цапфы, осевые опоры трения, обоймы шариковых н роликовых подшипников. Полиамиды заменяют традиционные цветные металлы, что объясняется их способностью выдерживать воздействие высоких нагрузок и скоростей скольжения при минимальном износе. Кроме того, детали из полиамидов бесшумны при работе и не подвержены коррозии. В ФРГ эта область применения полиамидов регламентируется стандартом УВ1-2541, в котором проводится общая информация и рекомендации по использованию ненаполненных термопластичных материалов в опорах трения. [c.132]

    КМУП отличаются от стеклопластиков с термореактивным и термопластичным связующим повышенным модулем упругости. С развитием реактивной авиации началось применение высокомодульных боропластиков с эпоксидным связующим. Высокая стоимость борных волокон, технологические сложности их получения и переработки, большой диаметр волокна (до 160 мкм), развитие производства углеродных волокон обусловили замену боропластиков на углепластики. [c.512]


    Полимеры, получаемые на основе бифункциональных соединений, термопластичны. Применение трифункциональных исходных веществ приводит к образованию пространственных полимеров, неплавких и нерастворимых. Разветвленные термореактивные полиорганосилоксаны получают гидролизом смеси би- и трифункциональных соединений, например диметилдихлорсилана и метил-трихлорсилана. Для получения термореактивных полиметилсилок-санов отношение К 51 < 2. При этом получаются твердые очень хрупкие материалы. Повышение отношения К 51 снижает их хрупкость, но повышает температуру и длительность отверждения. Таким образом, изменяя соотношение между би- и трифунк-циональными силанами, можно регулировать частоту сшивки полимеров. [c.245]

    Смолы, получаемые на основе бифункциональных соединений, термопластичны. Применение трифункциональных исходных веществ приводит к образованию пространственных полимеров — неплавких и нерастворимых. Термореактивные смолы получаются обычно на основе метилсилоксанов, например гидролизом метнл-трихлорсилана и диметилдихлорсилана. Отношение К 51 для получения термореактивных смол должно быть менее двух. При этом получаются твердые, очень хрупкие смолы. Повышение соотношения R 51 снижает хрупкость смолы, но повышает температуру и [c.304]

    В связи с этим резина нз полиизобутилеиа термопластична и склонна к течению под действием нагрузок, что ограничивает область применения полиизобутилеиа. [c.302]

    В результате поликонденсации фенола с альдегидами получаются смолы двух типов термопластичные и термореактивмые. Термопластичные смолы, известные под названием ново-лачных, образуются при избытке фенола в исходной смесн (на 7 молей фенола б молей формальдегида) и применении кислых ка- [c.218]

    Гибридные композиты имеют пониженную влагостойкость. Применение термореактивных и термопластичных сополимеров, например модифицированных эпоксипластов, повышает вла-гоустойчивость и позволяет уменьшить стоимость производства. [c.551]

    Сохранение термопластичными связующими текучести при 4,2 К [9-37,43] делает перспективным их применение в КМУП для криогенных температур (табл. 9-8). [c.552]

    Битумные и дегтевые вяжущие обладают целым комплексом полезных свойств они термопластичны, водонепроницаемы, погодоустойчивы и являются хорошими изоляторами. К тому же деготь, например, — хороший антисептик. Поэтому они широко применяются в строительстве. Например, при строительстве дорог используется до 75% всего производства органических вяжущих. Это объясняется тем, что дорожное покрытие из бетона на этих вяжущих отличается высокой износоустойчивостью, прочностью при различных климатических и погодных условиях и легкостью очистки дорожного полотна. Органические вяжущие на основе битума и дегтя находят широкое применение также при сооружении полов промышленных зданий, в качестве кровельных, гидро-, тепло- и пароизоляционных покрытий и материалов, приклеивающих мастик, покрасочных составов. Например, органические вяжущие, обладающие высокой адгезией к различным материалам и гидрофобными свойствами, применяют в качестве гидроизоляционных обмазок для защиты фундаментов зданий, трубопроводов, траншей, водохранилищ, бассейнов и т. д. Битум используется в качестве связующего материала при производстве плит из минеральной ваты, котерые применяются для теплоизоляции зданий, холодильных установок и трубопроводов. Органические вяжущие могут использоваться для защиты от коррозии металлов, бетона в виде, например, черных лаков, при сооружении защиты от радиоактивного излучения применяются они и для стабилизации грунтов. Не обходятся без органических вяжущих и другие области народного хозяйства, например лакокрасочная, нефтехимическая (производство пластмасс), электротехническая, металлургическая и др. [c.60]

    Одним из типов химической модификации высокомолекулярных соединений является реакция внутримолекулярной циклизации. Она может проходить в тех случаях, когда в состав макромолекул входят реакционноспособные группы, расположенные в цепи на расстояниях, необходимых для образовани.ч при их взаимодействии пяти- или шестичленных циклов. Такие группы есть в макромолекулах диеновых полимеров, поэтому эти полимеры в определенных условиях легко циклизуются, превращаясь в смолоподобные термопластичные вещества, находящие промышленное применение в качестве связующих в лаках и красках (особенно типографских), клеев, а также для получения озбностойких резин, водостойких и хорошо полирующихся покрытий. [c.58]

    Полимеры в чистом виде применяют в тех случаях, когда их свойства удовлетворяют необходимым требованиям без введения вспомогательных веществ. В основном это термопластичные материалы аморфной или кристаллической структуры. Упомянутый выше полистирол находит применение в виде прессованных изделий, нитей и пленок (стирофлекс), а полиметилметакрилат— в виде блоков и листов. Из чистого полиэтилентереф-талата состоит пленка лавсан, которая применяется в качестве пазовой изоляции и изоляции обмоточных проводов. К материалам этой группы относятся полиэтилен (не имеющий стабилизирующих добавок), большое число синтетических волокнистых материалов. [c.27]

    Продукт нитрования, содержащий около 10 % азота, отвечает по составу динитроклетчатке. В технике такой продукт известен под названием коллоксилин-, он дает вязкий раствор в смеси спирта и эфира (коллодий). Если к этому раствору добавить около 0,4 мае. ч. камфары на 1 мае. ч. коллодия, а йотом испарить растворитель, то остается прозрачная гибкая пленка — целлулоид. Еще с прошлого века целлулоид получил широкое применение как удобный термопластичный материал для производства многих изделий (игрушки, галантерея и т. д.). В особенности важно использование целлулоида в качестве основы для кинопленки, для производства нитролаков. Во всех этих случаях серьезным недостатком является сильная горючесть целлулоида, поэтому в наше время его все чаще заменяют другими материалами, в частности ацетилцеллюлозой. [c.312]

    Фотоинициирование полимеризации не нашло широкого применения в валовом производстве термопластичных линейных полимеров вследствие доступности подходящих низкотемпературных термоинициаторов. Основные практические приложения фотополимеризации связаны с полимеризацией in situ относительно тонких пленочных материалов. Помимо различных применений в переносе изображения фотополимеризация пленок [c.258]

    Полиэтилен (—СНз—СНа—) — термопластичное полупрозрачное вещество, продукт полимеризации этилена. Полимеризацию ведут либо при высоком давлении ( 200 атм) и при 200° С, либо при атмосферном давлении с применением в качестве катализатора триэтилалюминия А1(С2Н5)з в смеси с ТЮЦ. Полиэтилен высокого давления — высококачественный диэлектрик, использование которого возможно в диапазоне высоких и сверхвысоких частот. Его удельное объемное сопротивление порядка 10 ом-см, удельное поверхностное сопротивление 10 ол<, тангенс угла диэлектрических потерь (tgS) при 10 равен 0,0002—0,0004. Полиэтилен чрезвычайно устойчив к действию агрессивных сред (концентрированных кислот и щелочей). Влагонепроницаем, эластичен, легок (<1 = 0,92 — 0,96 г/см ), механически прочен. Полиэтилен способен набухать в [c.382]

    Свойства и применение нолиизобутилепов. Вследствие предельного характера полиизобутилены обладают некоторыми очень ценными свойствами, в частности хорошей стойкостью против агрессивных сред. Одпако по той же причине до сих пор пе найдено способа вулканизации полиизобу-тиленов, поэтому они могут применяться только в сыром состоянии. Резина из нолиизобутилепов, как и всякая другая невулканизованная резина, обладает такими существенными недостатками, как термопластичность, склонность к течению на холоду и другими, что не может не ограничивать ее применение. [c.653]

    Чтобы избел<ать некоторых часто встречающихся дефектов скорлуп (трещин, отслоения, низкой прочности прн растяжении), в состав формовочной массы вводят различные добавки [17—19]. Как уже указывалось выше, причиной растрескивания скорлупы является тепловое расширение формовочного песка при литье (см. табл. 14.2). Предотвратить появление трещин (помимо применения песков с низким коэффициентом термического расширения) можно путем введения в формовочную массу термопластичных добавок. Наиболее распространенной добавкой является модифицированная природная древесная смола, называемая винсолом, которая представляет собой смесь замещенных фенолов, производных природных смол п др. [19]. Винсол, применяемый в виде порошка или-хлоньев, имеет температуру размягчения 112°С (по методу кольца и шара ). Благодаря наличию фенольного кольца, винсол способен взаимодействовать с ГМТА, образуя термопластичную смолу с более высокой температурой плавления. Введение 0,25— 0,5% винсола (от массы песка) повышает стойкость материала к тепловому удару и снижает проникновение металла в поры. Однако добавление винсола в больших количествах приводит к снижению прочности формы при растяжении при нагревании, [c.217]

    Большое значение имеет подготовка поверхности и выб0 р типа грунтовки. Предпочтение отдается пескоструйной или дробеструйной очистке с последующим обезжириванием щелочью. Широко применяются грунтовки на основе пластифицированного каменноугольного пека, устойчивые к резким перепадам температур. При эксплуатации трубопровода в агрессивных средах грунтовку армируют стекловолокнистыми материалами, пропитанными термопластичными смолами. Используют также различные ингибированные грунтовки, на пример битумные эмульсии с добавкой смеси нитрита и нитрата Са (2% сухой соли от массы битума). Под лакокрасочные покрытия 1рименяют цинксодержащие грунтовки, по сути осуществляющие электрохимическую защиту труб от коррозии. В отдельных случаях находят применение фосфатирующие грунтовки, наносимые на неочищенные поверхности, что позволяет совместить в одной операции травление, обезжиривание, удаление ржавчины и окалины. [c.86]

    Сушку (отверждснне) нанесенных ЛКМ осуществляют при 15-25°С (холодная, естеств. сушка) и при повыш. т-рах (горячая, печная с шка). Естеств. сушка возможна при использоваш1и ЛКМ на основе быстровысыхающих термопластичных пленкообразователей (напр., перхлорвиниловых смол, нитратов целлюлозы) нли пленкообразователей, имеющих ненасыщ. связи в молекулах, для к-рьи отвердителями служат О2 воздуха или влага, напр, алкидные смолы и полиуретаны соотв., а также при применении двухупаковочных ЛКМ (отвердитель в ннх добавляется перед нанесением). К последним относятся ЛКМ на основе, напр., эпоксидных смол, отверждаемых ди- и полиаминами. [c.570]

    Применение. П.в. используют для произ-ва белья, фильтровальных тканей и нетканых материалов, негорючих драпировочных тканей, спецодежды, термо- и звукоизоляц. войлоков. Благодаря способности к высокой усадке П.в. используют для получения тканей повыш. плотности типа джинсовых, брезента, замши, плотных войлоков типа фетра. Для этих целей П.в. смешивают с др. волокнами (природными и химическими) и подвергают термообработке (усадке) изготовленные из них ткани, трикотажное полотно или нетканые материалы. Волокна из сополимеров с винилацетатом используют как термопластичное связующее при получении нетканых материалов и бумаги для чайных пакетов. [c.623]

    Кардовые полиарилаты фенолфталеина, фенолфлуорена, феиолантрона термопластичны. Их можно перерабатывать обычными для термопластов методами, что в сочетании с их высокой термостойкостью обуславливает широкие возможности применения этих полимеров для изготовления конструкционных изделий. Благодаря хорошим диэлектрическим свойствам они могут успешно применяться в радио- и электротехнике. На основе полиарилатов получают наполненные материалы, в том числе и антифрикционные, которые обладают низким коэффициентом трения и могут длительно работать без смазки в условиях высоких температур (250 °С), вакуума и больших градиентов скоростей между трущимися поверхностями (подшипники скольжения и качения). [c.113]


Смотреть страницы где упоминается термин Термопластичные применение: [c.391]    [c.193]    [c.129]    [c.610]    [c.552]    [c.158]    [c.68]    [c.63]    [c.265]    [c.372]    [c.443]    [c.611]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.73 , c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Термопластичность



© 2025 chem21.info Реклама на сайте