Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа скорости реакции зависимость от давления

    Изменение давления, влияя на величину летучести адсорбированного слоя, также будет вести к сдвигу реакции на другие места поверхности катализатора, как это видно из соотношения (И1.51). При высоких давлениях константы скорости адсорбции и десорбции, как и константа адсорбционного равновесия, становятся зависящими от давления, что, очевидно, должно приводить и к зависимости констант скорости реакции от давления. Влияние высоких давлений на скорость гетерогенных каталитических реакций было рассмотрено М. И. Темкиным [336] на примере синтеза аммиака. [c.243]


    Кроме того, для всех рассмотренных уравнений отмечается зависимость константы скоростей реакции от давления, кроме [c.165]

    Общие принципы изучения влияния давления на химические реакции, в том числе и на гомолитические превращения, изложены в работах [35-40]. Величину А К , определенную для атмосферного давления, обозначают А Го. Знак Д Го указывает на направление изменения константы скорости реакции с ростом давления. Из кривой зависимости логарифма константы скорости реакции от давления можно найти для данной величины давления тангенс угла касательной, который и позволяет вычислить АУ в данной точке. Некоторые авторы вычисляют АУ из прямой, проведенной по начальным точкам экспериментальной зависимости п кр Р. [c.214]

    Реакция идет по кинетическому уравнению второго порядка. Теория Линдемана позволяет также установить зависимость константы скорости реакции от давления. Скорость мономолекулярной реакции может быть выражена равенством [c.350]

    Химические реакции принадлежат к термически активируемым процессам, поэтому принято относить результат механического воздействия к изменению энергетического активационного барьера химической реакции. При этом предположение о линейной зависимости уменьшения аррениусовской энергии активации (энергетического барьера) термически активируемого процесса от величины растягивающего напряжения обычно вводится произвольно (теории ползучести металлов, уравнения долговечности полимеров и т. д.) или в лучшем случае как первое приближение разложения неизвестной зависимости в ряд Тэйлора. Формализм такого подхода не позволяет раскрыть физический смысл коэффициентов в соответствующих уравнениях (в том числе активационного объема) и более того приводит к противоположному результату при замене растягивающих напряжений сжимающими (вопреки эксперименту) растяжение подлежащей разрыву химической связи увеличивает мольный объем веществ в активирован- Ном состоянии и согласно классическому уравнению Вант-Гоффа для зависимости константы скорости реакции от давления сжимающее давление должно тормозить реакцию, т. е. сдвигать химическое равновесие в сторону рекомбинации связей. [c.4]

    Влияние сольватационных эффектов на зависимость константы скорости реакции от давления [c.137]

    Отношение коэ( фициентов активности при этой температуре, по данным [584], равно 0,75 (приближенно считается, что величина Т/ в смеси равна величине Т/ для чистого вещества при тех же температуре и давлении), откуда к = 0,70к (здесь к и значения констант скорости при 1 и 300 атм, соответственно). Поэтому в таком случае уже необходимо учитывать зависимость константы скорости реакции от давления. Уравнение (V. 375) подтверждено в работах [524, 525, 558, 585]. [c.246]


    При выводе уравнения для зависимости константы скорости реакции от давления Вант-Гофф использовал тот же прием, что и при выводе зависимости константы от температуры (см., часть I, стр. 52). Изменение объема системы [c.241]

    Согласно теории переходного состояния зависимость константы скорости реакции от давления выражается уравнением [c.183]

    На рис. У1П-22 показана зависимость константы скорости реакции от давления и на рис. У1П-23 влияние соотношения и НгО на концентрацию азотной кислоты. [c.317]

    Изучая изменения логарифма константы скорости реакции и давления, можно определить АУ+. При этом желательно, чтобы изменения давлений были порядка десятков мегапаскалей, так как константа скорости мало изменяется с изменением давления. Если график зависимости логарифма п к от р является прямой, то это значит, что АУ+ не зависит от давления и уравне- [c.218]

    Смысл этого результата состоит не в том, что молекулы с энергией, меньшей Е, могут реагировать, а в том, что экспериментальная энергия активации должна представлять собой разность средней энергии реагирующих и нормальных молекул. При низких давлениях константа скорости реакции молекул с энергией, превышающей Е, так велика по сравнению со скоростью их образования, что стационарная концентрация таких молекул пренебрежимо мала по сравнению с концентрацией молекул с энергиями, близкими к Е. Так как в среднем молекула имеет энергию skT, то при очепь низких давлениях средняя реагирующая молекула имеет энергию + кТ. Разность равна — (s—1) кТ, и она отличается от Е — (s—3/2) кТ на величину 1/2 кТ, которая обусловлена температурной зависимостью частоты столкновения. [c.214]

    Кинетические закономерности реакции изомеризации н-пентана на алюмоплатиновом катализаторе,промотированном фтором, были изучены в связи с разработкой технологии процесса [38]. Была установлена зависимость выхода изопентана от мольного отношения водород н-пен-тан, рабочего давления, температуры и объемной скорости подачи н-пентана. Было изучено также влияние парциальных давлений н-пентана и водорода на скорость протекания реакции. Состав исходного сырья и продуктов реакции определялся с помощью газожидкостной хроматографии. Реакция протекала с высокой селективностью выход продуктов распада не превышал 1%. Диаметр зерна катализатора составлял 1,5 мм. Для описания полученных закономерностей бьшо использовано уравнение для случая мономолекулярной обратимой гетерогенной реакции, протекающей в струе [39]. Преобразование уравнения дает следующее выражение для константы скорости реакции  [c.20]

    В настоящее время еще представляется возможным определить константы скорости отдельных реакций даже для немногих из многочисленных сернистых соединений различного типа, содержащихся в нефтяных остатках. То обстоятельство, что кинетика реакций достаточно точно описывается уравнением скорости для реакции второго порядка, дает простой удобный, правда, до известной степени эмпирический, метод представления кинетики гидрообессеривания нефтяных остатков. Простота уравнения этого типа облегчает экстраполяцию и интерполяцию к условиям реакции, при которых испытания фактически не проводились. Вследствие возможности определения зависимости константы скорости реакции от тем-пер атуры и давления легко можно выразить влияние важнейших параметров на процесс гидрообессеривания. [c.113]

    В диапазоне от мелкого порошка до гранул диаметром 5 мм скорость не зависит от размеров частиц. Требуемая полнота обжига 99%. Константы скорости реакции и равновесные давления в зависимости от температуры [c.301]

    Следует также отметить, что зависимость скорости химической реакции от давления в значительной степени определяется конкретным способом ее проведения. Так, например, при синтезе аммиака, который проводится с помощью твердого катализатора (железо, промотиро-ванное оксидом алюминия и оксидом калия), скорость суммарного процесса определяется кинетикой активированной адсорбции азота на поверхности катализатора, свободного от адсорбированного азота. Опыты по синтезу аммиака при 500 °С и давлениях до 50,6 МПа показали, что при давлениях свыше 10,1 МПа начинается ио-степенное уменьшение константы скорости реакции. Анализ экспериментальных результатов показал, что они объясняются отмеченным явлением — кинетикой активированной адсорбции. [c.180]

    Можно также разбить реактор на интервалы по степени превращения и приписать каждому интервалу определенную длину слоя в качестве начального приближения. Затем вычисляется средняя температура отрезка и по ней определяются константы скорости реакции и сама скорость. Последнюю рассчитывают, используя средние парциальные давления газов. Зная среднюю скорость реакции на данно.м отрезке, можно рассчитать его длину. Если при этом получается величина, не совпадающая с принятой вначале, то на длину вводится поправка и вычисления повторяются. Такой расчет проводится для каждого отрезка. В результате можно начертить график зависимости длины слоя катализатора и его температуры от необходимой степени превращения. Для повышения точности длина отрезков должна быть небольшой, тогда средние значения температур и скоростей реакции будут мало отличаться от действительных. [c.146]


    Выражения (6.5) и (6.6) позволяют сделать вывод о характере температурной зависимости констант скорости реакций рекомбинации-. при больших давлениях рек а при малых давлениях имеет отрицательный температурный коэффициент. Опытное изучение кинетики реакции рекомбинации радикалов -СНз находится в полном согласии с полученными заключениями. [c.79]

    К таким реакциям, изученным в газовой фазе, относят рекомбинацию свободных радикалов, присоединение атомов и радикалов к молекулам с кратными связями, димеризацию непредельных соединений. Эти реакции экзотермичны, и выделившаяся в реакции энергия остается в продукте реакции в виде колебательной энергии. Продукт реакции стабилизируется, если передает свою энергию при столкновении с другими молекулами. Так как частота столкновений увеличивается с ростом давления, то константа скорости бимолекулярной реакции присоединения также возрастает. Зависимость константы скорости реакции присоединения от давления описывается теорией мономолекулярных реакций (см. гл. X). Чем больше атомов в продукте реакции, тем ниже давление, при котором к и не зависит от давления. Стерический множитель реакций рекомбинации радикалов близок к 1 (0,5— [c.102]

    Таким образом, возможно решение и обратной задачи — по наклону прямой определять тепловой эффект реакции. На рис. V.I2 показано также примерное расположение прямой 2 для эндотермической реакции. В связи с обсуждаемой зависимостью Кр = f Т) мы хотели бы обратить внимание читателя на сходство уравнений (V.157) и (V.160), а также рис. V.]] с уравнениями (V.18) и (V.21) и соответствующими прямыми зависимости давления насыщенного пара от температуры. Это сходство не случайно, так как давление пара тоже можно рассматривать как константу равновесия процесса испарения (или возгонки). Однако в последнем случае процесс всегда сопровождается поглощением теплоты и поэтому прямые для давления пара имеют наклон такого же типа, что и у кривой 2 рис. V. 11. Вообще зависимости типа (V.157) или (V.158) распространены в физике и физической химии. Можно, например, напомнить уравнение Аррениуса, описывающее зависимость константы скорости реакции от температуры. Появление здесь этого уравнения связано с изменением температурной зависимости приближенно равновесной концентрации активированных молекул. [c.144]

    Используем для процессов такого типа изложенные закономерности по влиянию давления на скорость реакций с применением метода переходного состояния [см. уравнение (64)]. Знак изменения логарифма отношения констант скорости реакций в зависимости от давления будет определяться разностью изменений объемов при образовании активированного комплекса при реакциях (1) и (2) АУ, -ДКГ. [c.185]

    На рис. У.42 изображены кривые зависимости константы скорости реакции от концентрации катализатора при давлениях 200 и 300 ат. [c.351]

    Предполагая, что между паровой и жидкой фазой в реакторе существует состояние равновесия, и что константа скорости реакции зависит от температуры, построить модель, решая которую можно определить зависимость состава конечного продукта от длины реактора, расположения отводов пара, диаметра реактора, входного давления и температуры в рубашке. [c.217]

Рис. УП1-22. Зависимость константы скорости реакции от давления (температура 9Э°С, отношение М204 Н20=8ч-8,5). Рис. УП1-22. <a href="/info/1045544">Зависимость константы скорости</a> реакции от <a href="/info/3671">давления</a> (температура 9Э°С, отношение М204 Н20=8ч-8,5).
    Константа скорости реакции 3-го порядка. Выше было показано, что на стадиях, не очень близких к завершению, и при давлении N0 1 мм рт. ст. реакция окисления N0 кислородом точно следует кинетике 3-го порядка. Авторы работ [75, 76, 81, 119] измерили значение констант скорости 3-го порядка в диапазоне температур от 143 до 779 °К. Данные указанных авторов представлены на рис. 1.1. Можно видеть, что экспериментальные результаты работ [75, 76, 81, 119] ложатся на одну кривую, наклон которой изменяется с ростом температуры. Изменение наклона кривой 1д а от- указывает на зависимость аррениусовских параметров константы скорости къ от температуры. [c.43]

    Давление влияет на направление и скорость химических реакций, протекающих при крекинге, но это влияние изменяется в зависимости от условий процесса. Если крекинг протекает в л<идкой фазе — при использовании тял<елого сырья н при умеренных температурах (420—470° С), то давление практически не оказывает влияния па скорость и направление мономолекулярного распада. Одпако как только образующиеся продукты распада или исходное сырье переходят в паровую фазу, роль давлеиия повышается. При этом большое значение имеет абсолютная величина даиления. При умеренных давлениях скорость мономолекулярного распада практически ие изменяется. Поскольку крекинг протекает по радикально-цепному механизму, характер реакции обрыва цепе] изменяется в зависимости от абсолютной величины давления. М. Г. Гоникберги В. В. Воеводский показали, что при невысоких давлениях (порядка нескольких атмосфер) повышение его способствует увеличению константы скорости крекинга, а при высоких (порядка сотен атмосфер и более) наблюдается обратное явление. Так, по данным А. И. Динцеса , в процессе термического крекинга бутана при 575° С и глубине распада около 9—13% повышение избыточного давления с 3,9 до 10,8 ат вызывает увеличение константы скорости реакции с 0,007 до 0,022, т. е. примерно втрое. Г. М. Панченков и В. Я- Баранов , подвергая крекингу фракцию 300—480° С грозненской парафинистой нефти при 510° С и избыточном давлении 1 10 и 50 ат, установили, что максима.яьпое значение констант скорости реакции соответствует давлению около 10 ат-, дальнейшее повышение давления сопровождается снижением скорости разложения. [c.41]

    Соотношения (2.6) и (2.10), полученные для смесей идеальных газов, не позволяют найти зависимость константы скорости реакции от давления, так как от давления не зависят константы равновесия Кр или Кс)- Зависимость константы скорости от давления может быть найдена, если применить (2.6) или (2.10) к идеальной смеси реальных газов. В реальных газах при достаточно высоких давлениях, когда их свойства не подчиняются закону идеального газа, вместо давления газа рассматривается его фугитивность /. Отношение фугитивности к давлению называется коэффициентом фугитив-ности 7 и характеризует отклонение газа от идеального состояния (для идеального газа / = р и 7 = 1). При низких давлениях 7 близок к единице, а при высоких давлениях может достигать больших значений (например, для этилена при 150 °С и давлении, близком к 3,6-10 Па, 7 13,5 [4]). Приближенная зависимость константы скорости реакции от давления может быть получена, если рассмотреть химическое равновесие реакции между реальными газами, а затем полученное выражение применить к процессу перехода реагирующей системы в активированное состояние. Тогда, используя (2.10), найдем  [c.25]

    Зависимость константы скорости реакции от давления при температуре процесса 90° С и соотношении N204 Н2О = 8—8,5 определяется уравнением  [c.317]

    Все эти предварительные замечания в равной степени относятся к исследованию влияния высокого давления на константы скорости реакций ферментов [114] и белков] [115]. Величины и АУм, которые могут быть получены из зависимости констант скорости от давления, нельзя интерпретировать только с точки зрения изменения объема фермента или белка без тщательной оценки других параметров системы и их изменения с давлением. Ионизация различных групп, например, обычно сопровождается уменьшением парциального молярного объема за счет электрострикции растворителя. Влияние давления на ионизацию может в значительной степени. чатруднить изучение других процессов, связанных с влиянием давления на константу скорости. [c.565]

    Легко видеть, что. пренебрегая при малых давлениях единицей, а при больших — вторым слагаемым в знаменателе уравнения (VI, 14), получнм предельные кинетические законы второго и первого порядка соответственно Уравнение (VI. 14) дает также возможность более точно выразить зависимость константы скорости реакции от температуры и давления по сравнению с уравнением (VI, 9). Совпадения с опытом, как это показал сам автор теории иа примере расчета данных для большого числа реакций, можно добиться путем-подбора (с большим или меньшим физическим обоснованием) значения га. Таким образом, и в теории Касселя допускается не всегда физически обоснованный подбор чисел. Кроме того, остается теоретически не уточненной константа А. [c.170]

    Величина обратно пропорциональна давлению и возрастает с повышением температуры пропорционально чем больше масса и диаметр молекулы, тем труднее она диффундирует. Зависимость коэффициента молекулярной диффузии от свойств среды проявляется в основном в изменении эффективного сечения столкновений. Определение коэффициентов молекулярной диффузии в многокомпонентных смесях представляет собой чрезвычайно сложную задачу. При расчете химических процессов зависимостью коэффициентов диффузии от состава газовой смеси обычно можно пренебречь. Также несущественна в обычных условиях и зависимость ко фициеита диффузии от температуры степенная зависимость В Т) не идет ни в какое сравнение с экспоненциальной температурной зависимостью константы скорости реакции, и при перепадах температуры, набл] даемых в каталитических процессах, коэффициент молекулярвой-ди фузии остается практически постоянным. [c.99]

    В работе [418] была определена энергия связи С—О в радикале СРэО из сопоставления кинетических данных с расчетами в рамках теории РРКМ с использованием этой программы. Экспериментальная зависимость константы скорости реакции радикалов СРз с кислородом от давления [c.190]

    Изучение кинетики гидрогенолиза индивидуальных сераорганических соединеппй над кобальто-молибденовым катализатором [198— 201] показало, что скорости протекания реакций гидрогенолиза в сильной степени зависят от строения молекул гидрируемых соединений. Характер изменения скорости реакции гидрогенолиза сераорганических соединений в зависимости от их строения виден из данных, приведенных в табл. 82, где коэффициент а — величина, пропорциональная константе скорости реакции в 0,5%-ных растворах сераорганических соединений. Гидрогенолиз проводился при температуре 375° С п парциальном давлении водорода 33,3 атм. [c.386]

    Отсюда видно, что энергия активации реакции крекинга парафинов, начиная от бутана, во всяком случае не имеет тенденции к уменьшению по мере увеличения молекулярного веса парафинового углеводорода. Выше уже было отмечено, что трудно допустить также возможность увеличения энергии активации реакции крекинга парафинового углеводорода по мере увеличения молекулярного веса его. Отсюда мы приходим к выводу, что величина энергии активации реакции крекинга под давлением высших парафиновых углеводородов от бутана до С23Н48 не зависит от молекулярного веса и равна 59 Еал моль. Весьма вероятно, что и для более высокомолекулярных парафиновых углеводородов нормального строения, например до СзаНвб, величина энергии активации также заметно не изменяется. Переходим к установлению зависимости константы скорости крекинга под давлением высших парафиновых углеводородов.Для этой цели необходимо сопоставить константы скорости крекинга парафиновых углеводородов различного молекулярного веса при одной какой-либо температуре. Ввиду надежности статического метода предпочтительно использование данных, полученных статическим методом. [c.96]

    КИНЕТИКА ХИМИЧЕСКАЯ (греч. к пб11ко5 — способный двигать) — учение о скорости химических реакций, важнейший раздел физической химии. Под К- X. понимают зависимость скорости химической реакции от концентрации реагирующих компонентов, температуры, давления, катализатора и других параметров, например, потенциала электрода — в электрохимических реакциях, интенсивиости света — в фотохимических реакциях, дозы излучения — в радиационно-химических реакциях й т. д. Скоростью химической реакции называется число актов реакции, происходящих за единицу времени в единице объема фазы — в случае гомогенной реакции, или на единичной поверхности раздела — в случае гетерогенной реакции. Одной из важнейших характеристик К. X. является константа скорости реакции, которую определяют через концентрацию реагирующих компонентов. Йапример, для реакции [c.126]

    Схема Линдемана объяснила наблюдающуюся на опыте смену порядков реакции с изменением давления. На рис. XIII. 7 приведена зависимость периода полураспада диэтилового эфира от начального давления эфира. Время полураспада обратно пропорционально константе скорости реакции с ростом давления значения уменьшаются, достигая постоянного значения. Обнаружено, что в процессах активации и дезактивации молекул реагента А участвует не только сам реагент. Важную роль в некоторых случаях играют продукты реакции и посторонние газы. Из рис. XIII. 7 следует, что добавление водорода препятствует увеличению при разложении эфира. Эффективно участвуя в процессах передачи энергии, водород компенсирует влияние уменьшения начального давления эфира и поддерживает период полураспада на уровне, отвечающем высоким начальным давлениям эфира. Часто подобным компенсирующим влиянием обладают продукты реакции, поэтому наблюдаемая мономоле-кулярная константа скорости реакции Кзф не изменяется в ходе опыта, даже если давление реагента сильно уменьшается. [c.747]

    Ро — давление Ъх, з, 4, 65, в и — адсорбционные коэффициенты соответственно для СвНю, СвНд, Нд, С,На, СН4, СОа и НзО кх, А , к — константы скоростей реакций СдНюСзНа 4-На, С Ню 4-С,Н84-4- СН4 и СаНю —>7С 4- СН4 4- ЗН2 соответственно их зависимость от темнературы выражается по закону Аррениуса [4]  [c.220]

    Для удобства технических расчетов В. И. Атрощенко дает три системы констант скорости реакции в зависимости от способа выражения начальных концентраций К — К01нстанта скорости реакции при выражении исходных концентрации, % Кр — константа скорости при выражении исходных концентраций через парциальные давления, кгс/ом /Сс-константа скорости при исходных концентрациях, моль/л. [c.54]


Смотреть страницы где упоминается термин Константа скорости реакции зависимость от давления: [c.52]    [c.5]    [c.221]    [c.272]    [c.328]    [c.75]    [c.35]    [c.220]    [c.47]    [c.274]    [c.111]    [c.112]   
Курс химической кинетики (1984) -- [ c.127 ]

Курс физической химии Том 2 Издание 2 (1973) -- [ c.147 , c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость констант скорости

Константа зависимость

Константа скорости

Константа скорости реакции

Константы давление

Реакция зависимость скорости от давления

Реакция константа

Реакция скорость, зависимость

Скорость давлении

Скорость зависимость



© 2025 chem21.info Реклама на сайте