Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы волн. Области применения

    Альтернативным подходом к определению световых интенсивностей является измерение скорости фотохимической реакции, для которой квантовый выход точно известен. Химические системы такого типа называются химическими актинометрами. Разумеется, квантовый выход самого актинометра должен быть определен посредством абсолютных (т. е. с применением термостолбика) измерений интенсивностей света. Химические актинометры предпочтительны вследствие независимости их показаний от длины волны света и экспериментальных параметров. Одним нз наиболее употребительных составов для этой цели является раствор КзРе(Сг04)з, известный в этой области как ферриоксалат калия. Окисление ферриоксалата в кислом растворе приводит к восстановлению Fe + до Fe + и одновре- [c.188]


    Типы волн. Области применения [c.20]

    Ниже дается описание некоторых основных типов отечественной спектральной аппаратуры, применяемой в аналитической практике. Это описание не может служить руководством при работе с прибором, так как в нем приводятся только основные характеристики и область применения данного прибора. Для более детального ознакомления можно рекомендовать заводские инструкции и описания, прилагаемые к прибору, у V Спектрограф ИСП-51. Прибор ИСП-51, а также приборы ИСП-51 А и ИСП-53 представляют собой трехпризменные спектрографы со стеклянной оптикой. Все три прибора используют одну и ту же призменную систему, состоящую из двух одинаковых 60°-х призм и одной призмы постоянного отклонения (рис. 56). Как легко понять, при таком расположении призм луч, идущий в условиях минимального отклонения, будет повернут на 90° по отношению к падающему лучу, что делает применение этой призменной системы очень удобным при конструктивном оформлении прибора. Для изменения длины волны центрального луча призмы поворачиваются. [c.77]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Выбор схемы контроля. Области применения различных методов контроля Кратко изложены во введении. Как там отмечено, наиболее часто применяют эхометод. Объемные волны (продольные и поперечные) применяют для выявления дефектов в толще и вблизи поверхности массивных изделий, толщина которых значительно превосходит длину волны. Продольные волны, как правило, используют, когда ультразвук необходимо ввести нормально или под небольшим углом к поверхности поперечные — когда угол ввода должен быть значительным (35° и более). Это обусловлено удобством возбуждения волн одного типа продольных — нормальным или наклонным преобразователем с небольшим углом ввода, поперечных — наклонным преобразователем с углом падения между первым и вторым критическими углами. [c.185]


    Первый тип — это однолучевой спектрофотометр, измеряющий по отдельным точкам. В сочетании с измерительной системой по схеме уравновешенного моста он является наилучшим прибором для точных количественных измерений. Основной недостаток его состоит в большой затрате времени, если требуется снять спектр, а не полосу поглощения при одном лишь значении длины волны. Ценность применения однолучевых приборов для качественной съемки спект ров снижается из-за необходимости строить график от руки и производить измерения на дискретных длинах волн, а не в сплошной области спектра. [c.203]

    Рассмотрим области применения других типов волн, кроме продольных и поперечных. [c.333]

    Области применения методов. Из рассмотренных акустических методов контроля наибольшее практическое применение находит эхо-метод. Около 90 % объектов, контролируемых акустическими методами, проверяют эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических ма- [c.213]

    Методически исследования долговечности и скорости роста трещин для полимеров в условиях УФ-облучения производились на тех же рычажных установках, что и испытания без облучения (см. 1 гл. I). Облучение образцов под нагрузкой проводилось лампами типа ПРК с применением кварцевых линз. Поток энергии УФ-излучения в области длин волн от 230 до 270 нм контролировался при помощи термостолбика и поддерживался в течение опыта постоянным. [c.411]

    Алкильные заместители водорода в этилене вызывают увеличение интенсивности полос поглощения и смещение их в сторону длинных волн. Значительно большие эффекты этого рода вызываются заместителями типа С1, ОН, SH и NH2. Их действие качественно может быть разъяснено расчетами по методу молекулярных орбит. Анализ олефинов, содержащих изолированные двойные связи С = С, на современных спектрофотометрах недоступен вследствие того, что наиболее длинноволновая полоса поглощения имеет малую интенсивность и лежит nai коротковолновой границе области применения приборов. [c.357]

    Люминесцирующие производные антрахинона нашли применение в качестве преобразователей энергии для активных лазерных сред в перестраиваемых лазерах на красителях. Растворы таких соединений подвергают облучению светом с длиной волны, близкой максимуму длинноволнового поглощения, а излучают свет с длиной волны, соответствующей полосе люминесценции [57]. Применение различных типов световой накачки - непрерывными или импульсными лампами, импульсными лазерами, использование красителей, обладающих полосами поглощения и люминесценции в различных областях спектра, позволили создать лазеры с разнообразным режимом работы. Лазеры на красителях дают возможность получать перестраиваемое излучение в широком диапазоне длин волн - от УФ до ИК области спектра. На их основе создано уникальное контрольно-измерительное технологическое оборудование, например, флуориметры, атомно-флуоресцентные спектрофотометры, предназначенные для научных исследований и использования в электронной промышленности, цветной металлургии, биотехнологии, экологического контроля окружающей среды. Перестраиваемые лазеры на красителях используют в медицине для диагностики и фотодинамической терапии рака [57]. У этой бурно развивающейся отрасли приборостроения большое будущее. [c.35]

    Огромные мощности, излучаемые импульсными твердотельными лазерами, позволили наблюдать ряд новых эффектов, возникающих при взаимодействии света с веществом. В первую очередь следует упомянуть генерацию гармоник, явление вынужденного комбинационного рассеяния и рассеяния Мандельштама — Бриллюэна. Оказалось также сравнительно легко наблюдать томсоновское рассеяние света на электронах плазмы. Наблюдались также явления стимулированной флуоресценции, возбуждение флуоресценции и ионизация в результате одновременного поглощения нескольких фотонов и, наконец, явление образования горячей плазмы при воздействии сфокусированных лазерных импульсов на различные газы и твердые мишени. Все это существенно расширило область применения спектроскопических исследований не только в результате открытия ряда новых эффектов, но и благодаря существенному облегчению условий изучения уже известных явлений. Так, например, недавно разработанные лазеры на органических красителях с непрерывно перестраивающейся в достаточно широком интервале длиной волны излучения могут рассматриваться как совершенно новый тип монохроматора. Их можно применять для детальных исследований спектров поглощения [10.29]. [c.273]

    Другой тип энергетических потерь в диэлектриках связан с электронной Рэл и атомной Рат поляризациями, обусловленными смещениями (ток смещения) под действием электрического поля электронов, ядер, ионов или атомных групп (резонансное поглощение). Для практического применения диэлектриков представляет интерес рассмотрение деталей перехода от установившейся полной поляризации при низких частотах к поляризации при оптических частотах, так как они непосредственно связаны с разделением поляризации при низких частотах на ее составляющие ориентационную и деформационную (атомную и электронную). Резонансные потери проявляются при частотах Ю —10 Гц (миллиметровая и инфракрасная области длин волн). Существование их у полимеров обусловлено наличием собственных колебаний атомных групп. Некоторые полосы поглощения в инфракрасной области связаны с трансляционными движениями диполей. Характер изменения потерь энергии при этом имеет сходство с соответствующими зависимостями при дипольной релаксации. Мнимая составляющая " обобщенной диэлектрической проницаемости е изменяется в окрестности резонансной частоты примерно так же, как и при дипольной релаксации (проходит область максимума), хотя потери энергии в этом случае имеют другую природу и требуют иного аналитического описания. В то же время диэлектрическая проницаемость е при дипольной релаксации и резонансном поглощении изменяется ио-разному. [c.178]


    При потенциалах более положительных, чем +0,6 в, например при +1,2 в, в сильнокислой среде на платиновом электроде возможно и восстановление ванадия (V), и окисление железа (И). Поэтому в данном случае до конечной точки титрования наблюдается катодный ток ванадата, величина которого, однако, сравнительно незначительна, так как потенциал +1,2 в соответствует не области диффузионного тока, а начальной части волны восстановления ванадата (кривая 1, рис. 24, i4). После точки эквивалентности, когда в титруемом растворе появятся избыточные ионы железа (II), наблюдается анодный ток их окисления и кривая титрования примет вид, изображенный на рис. 24, д. Если уменьшить кислотность раствора, то электрохимическое восстановление ванадия (V), как указано выше, совсем не имеет места. Тогда при титровании при лотенциале +1,2 в вначале нет никакого тока лишь после конечной точки за счет избыточных Ре2+-ионов возникает анодный ток. Кривая титрования будет иметь вид, изображенный на рис. 24, е. Этот тип титрования находит широкое применение при определении различных окислителей солью Мора (см. гл. VII). [c.78]

    При использовании такого черного тела в качестве эталона для измерений энергии излучения возникают некоторые трудности. В первую очередь следует отметить, что излучение, поступающее через небольшое отверстие, содержит все длины волн от далекого инфракрасного излучения до глубокого ультрафиолетового, хотя крайние области обладают небольшими интенсивностями. Следовательно, любой возможный измерительный прибор должен реагировать с одинаковой эффективностью на определенное количество эргов на квадратный сантиметр в секунду независимо от длины волны или частоты. Существуют несколько приборов такого типа можно взять, например, одно-или многоспайный термоэлектрический элемент и покрыть спаи платиной или газовой сажей таким образом, чтобы по увеличению температуры можно было бы очень точно измерять суммарную энергию излучения независимо от длины волны (см. в работе [32] стр. 79). Если имеется такой термостолбик (который можно приобрести у ряда фирм, а при желании сделать самому), то он может быть применен в совокупности с гальванометром, используемым для непосредственных отсчетов. Гальванометр в свою очередь можно прокалибровать при помощи черного тела, используя закон Стефана. [c.237]

    Голографические решетки типа II и их механические аналоги с криволинейными штрихами пригодны для любых схем приборов с установкой ще.тей и решетки на круге Роуланда. Решетки типа III и нарезные с переменным шагом хороши лишь в приборах, где необходимо высокое разрешение в узком спектральном диапазоне применение их в спектрографах и полихроматорах для широкой области длин волн сдерживается неудобной формой фокальной поверхности. [c.123]

    В. Анодные волны. С ртутным капельным электродом получаются два общих типа анодных волн. В первом случае может происходит1> действительное окисление растворенных веществ. Так, гидрохинон может быть окислен в хинон и аналогично хинон восстановлен в гидрохинон. Область определяемого диффузионного тока наблюдается, как только потенциал делается достаточно положительным. Уже было сказано, что обычная область применения капель, ного ртутного электрода ограничена в направлении положительных потенциалов потенциалом, чри котором происхо- [c.201]

    Применение спектров поглощения к решению вопросов, связанных с горением, обычно ограничивается областью длин волн от видимой части до 2300 А. Это связано, вероятно, с падением чувствительности фотографических пластинок в далекой ультрафиолетовой области. Область от 2300 до 1900 А дост пна для малых спектрографов различных типов при условии применения соответствующих фотографических пластинок. Неудачи при работе с обычными пластинками связаны с поглощением желатиной ультрафиолетового света, которое приводит к тому, что свет действует лишь ла самую внешнюю часть светочувствительного слоя поэтому после проявления получаются почти прозрачные серые негативы. Эти затруднения могут быть преодолены либо нанесением на пластинку флюоресцирующих веществ, например, таких как медицинский парафин или вазелин, растворенные в бензоле, либо при применении специальных пластинок, в которых серебряная эмульсия нанесена на поверхность. Вопрос о выборе пластинок для этой части ультрафиолетовой области разобран Хэнтером и Пирсом [150]. Интервал длин волн от 2300 до 1900 А особенно интересен потому, что многие органические вещества, прозрачные для видимого света и в недалеко ультрафиолетовой области, поглощают свет именно в этой части спектра. Поэтому весьма желательно, чтобы новые исследования спектров поглощения простирались возможно дальше в область коротких длин волн. Действительны предел [c.153]

    Фотохимическое хлорирование при низкой температуре является удобным методом получения полихлорциклогексанов. Реакцию можно проводить с применением растворителя типа четыреххлористого углерода. Как и в других случаях фотохимического хлорирования, кислород является ингибитором реакции. Свет является мощным ускорителем хлорирования, однако аскаридол может вызвать такую же реакцию и в темноте [17]. Скорость фотохимического хлорирования прямо пропорциональна интенсивности света и не зависит от концентрации хлора. Реакция протекает с квантовым выходом 19—41 моль на 1 квант в области 366—436 т/1. Наиболее эффективным, по-видимому, является свет с длиной волны 366 т/и [4]. [c.65]

    Среди разнообразных физических явлений микроуровня отметим следующие локальные перегревы (температурные вспышки) до 1300 К в областях контакта частиц, имеющих площадь 10 - 10-5 2 в течение времени порядка Ю с локальные высокие давления до 10 Па, механоэмиссия и экзоэмиссия электронов. Под действием поверхност-но-активных веществ наблюдается эффект Ребиндера, приводящий к понижению их прочности [5]. Протекание процессов дробления существенно зависит от температуры например, при снижении температуры тела переходят из пластического состояния в хрупкое и стеклообразное. Направленное применение перечисленных явлений позволяет повысить эффективность процессов, а также активировать меха-нохимические процессы. Знакопеременные механические напряжения, возникающие при акустических воздействиях, также оказывают большое влияние на скорость и характер протекания процесса в твердых телах и на их поверхностях, на динамику дислокаций и микротрещин. Взаимодействие прямых и отраженных волн напряжений приводит к разрушениям типа откола и угловым разрушениям. [c.114]

    Весьма перспективными, нашедшими промышленное применение, являются приборы, использующие излучение в ближней инфракрасной области (1—3 мкм). На этом принципе в Военно-морском кораблестроительном институте в Вашингтоне разработан влагомер, предназначенный для автоматического определения общей воды (в отдельных случаях и свободной) в потоке дизельных топлив и реактивного топлива типа JP-5. Вода, содержащаяся в топливе, поглощает энергию инфракрасных лучей с длиной волны порядка 2,0 мкм. Асимметричные молекулы и молекулярные группы топлив и воды резонансно поглощают электромагнитную энергию инфракрасных волн особым, характерным для них способом. Вода обладает максимальным поглощением при длине волны 2,9 мкм. Понижение (в%) поглощающей способности смеси воды и Т0)пли1ва соответствует концентрации воды в топливе. Прибор обеспечивает определение содержания общей воды до 1%, причем в тяжелых дизельных топливах — с точностью от 0,1 до 0,015%, в реактивном топливе JP-5 с точностью 0,0001% [c.177]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]

    Светофильтры подразделяются на нейтральные (серые), равномерно ослабляющие падающий свет, и избирательные, изменяющие спектральный состав света. Последние, в свою очередь, бывают двух типов отрезающие светофильтры, поглощающие свет до заданной длины волны, и полосовые - однозональные или двухзональные, пропускающие свет в одной или двух областях спектра [68]. Производные антрахинона нашли применение во всех указанных типах светофильт- [c.36]

    Для создания сильных магнитных полей наиболее удобны магнитные системы на основе сверхпроводящих соленоидов. В настоящее время в спектроскопии ЯМР широко применяются сверхпроводящие системы на 50—100 кЭ, в которых однородные магнитные поля создаются в достаточно больших объемах. Повышение магнитного поля до 100 кЭ требует испотпьзования электромагнитного излучения с частотой 3.10 Гц или с длиной волны 1 мм. Это весьма неудобный диапазон, так как источники излучения на основе лазеров работают в более коротковолновой области, а традиционные для ЭПР-спектроскопии клистронные генераторы освоены для более длинноволновых диапазонов ( ]> 2 мм). Исходя из этих соображений, для практической работы выбран диапазон >, = 2 мм (N 50 кЭ). Для химических применений необходимо было создать спектрометр, обладающий достаточно высокой концентрационной чувствительностью и позволяющий проводить исследования в широком диапаэоне температур и с образцами разного типа (растворы, порошки, стекла и т. д.). [c.176]

    При серийном контроле прямыми искателями, например при контроле стальных листов или прутков, к оператору предъяв--ляют минимальные требования. Часто достаточно обучения в течение нескольких часов, если оператор хорошо понимает задачу и имеет достаточно умелые руки, чтобы перемещать искатель, не вызывая его износа. Для работ с поперечными поверхностными волнами и волнами в пластинах, например для контроля сложных изделий типа осей, труб или даже сварных швов, нужно больше опыта и необходимо некоторое обучение, по крайней мере изучение руководства по проведению контроля, учебные курсы или учебная практика под руководством опытного оператора. В этом случае требуется также и некоторое техническое образование, нужны элементарные математические знания и хорошее пространственное воображение. Для перехода к самостоятельной работе по контролю сварных швов и дорогостоящих изделий индивидуального произвоства обязательно необходимо основательное знание материала, по крайней мере в объеме экзаменов для квалифицированного рабочего в данной области производства нужны также и особые черты характера, например прилежность и добросовестность, причем в гораздо большей степени, чем при других способах контроля. Для самостоятельного применения многих разнообразных и недавно разработанных методов испытания требуется по крайней мере физическое и математическое образование в объеме среднетехнического учебного заведения и кроме того длительный личный опыт работы в синей спецодежде с грязными промасленны-1ЦИ пальцами. [c.399]

    Численная реализация моделей течений, учитываюгцих неравновесные эффекты, сводится к решению смешанных нелинейных краевых задач для систем уравнений в частных производных высокого порядка с малыми параметрами перед старшими производными, и представляет собой сложную проблему. Кроме того, решения должны быть получены в областях, в которых наряду с подобластями гладких течений содержатся зоны резких неоднородностей типа ударных волн, пограничных слоев и с заранее неизвестными границами. Все это требует разработки и применения эффективных численных и аналитических методов исследования таких задач. [c.8]

    В качестве источников в СКР обычно применяют два типа лазеров. Гелпй-неоновый лазер, имеющий длину волны излучения 6328 А, сравнительно недорогой источник, но обладает ограниченной мощностью (приблизительно 80 милливатт). Его монохроматическое излучение находится в красной области видимого спектра, поэтому не нужно опасаться люминесценции или фоторазложения. Однако при такой относительно большой длине волны комбинационное рассеяние менее эффективно, к тому же обычно используемые фотодетекторы имеют ллохую чувствительность в этой области. В будущем можно ожидать, что вместо гелий-неонового лазера найдут применение более мощные лазеры, например криптоновый ионный лазер с длиной волны излучения 5682 А. [c.744]

    Суш,ествепную роль в характеристике органических соединений играют спектры поглощения. Часть спектра электромагнитной радиации, соответствующая длине волны от 2-10 см до 150-10 см, наиболее полезна в этом отношении. Некоторые типы органических соединений поглощают в ультрафиолетовой и видимой частях спектра (рис. 1.1) при характерных длинах волн и интенсивностях, что обусловлено возбуждением менее прочно связанных электронов в молекулах. Почти все органические вещества поглощают в инфракрасной области, и интенсивность поглощения меняется с изменением длины волны, давая детальную картину, обычно используемую для характеристики или идентификации соединений. Поглощение в этой части спектра связано с вибрациями различных частей молекулы относительно друг друга. Замечательной особенностью таких спектров является то, что они не только дают способы узнать молекулу в целом, но также часто позволяют идентифицировать некоторые из ее частей. В гл. 28 подробно описывается применение спектроскопии в органической химии. [c.21]

    Вследствие весы а малой продолжительности всех процессов применение ударной трубы полностью устраняет два серьезных недостатка, присущих реакторам обычных типов при использовании их для исследований к области высоких температур, — опасность разрушения и маскипующее влияние побочных реакций, протекающих на стенках. С другой стороны, весьма малая продолжительность реакции исключает возможность точного измерения температуры реакции вследствие инерционности любых устройств, применяемых для измерения температуры. Температуру реакции приходится вычислять пз уравнений, основываюпщхся на измеренных скоростях прямой ударной волны. Эти уравнения выведены на основании законов сохранения массы, количества движения и энергии с обеих сторон фронта волны (см. дальше). [c.306]

    С 1852 г. —времени открытия Стоксом (1852) прозрачности кварца для ультрафиолетовых лучей и применения кварцевой аппаратуры — и до 1890 г. ни одна линия не была получена с длиной волны ниже 185 нм. Высказывалось даже предположение, что это естественный предел спектра более правильным, однако, было предположение, что достигнутый предел означает не что иное, как предел прозрачности применявшихся в спектроскопии материалов. Как показал Шуман (1890), действительно и кварц, и воздух, и желатин фотопластинок уже становятся помехой для прохождения лучей с длиной волны менее 185 нм. Шуман применил вместо кварца более подходящий материал — флюорит ( aFj), на полную прозрачность которого для ультрафиолетовых лучей указал Миллер еще в 1863 г., а также стал работать в вакууме и со специального типа фотопластинками. Отсюда берет начало вакуумная УФ-спектроскопия. Сам Шуман полагал, что граница его исследований достигала длин волн 100 нм, однако, как было показано вскоре (Мартенс, 1901), она вряд ли лежала ниже чем при 125 нм. Дальнейшее усовершенствование техники вакуумной УФ-спектроскопии связано с именем Лаймена (1904 г. и след.), отодвинувшем эту границу до 50 нм. В дальнейшем была открыта возможность для изучения ультрафиолетового спектра с длиной волн до 10 нм, области, где ультрафиолетовое излучение уже перекрывается с областью мягкого рентгеновского излучения. Далекая ультрафиолетовая область представляет особый интерес для изучения насыщенных соединений, потому что линии электронных спектров поглощения водорода с насыщенным атомом углерода расположена только в далеком ультрафиолете. Олефины с несопряженными двойными связями также обладают характерными спектрами поглощения в этой области (Карр и сотр., 1936) и т. д. [c.232]

    Обратимся теперь к совершенно другой области. Не говоря уже о применении спектрофлуориметрии для определения конкретных веществ, ее можно использовать в качестве эмпирического метода, или метода отпечатков пальцев для идентификации сложных смесей естественного и искусственного происхождения или для сравнения различных фракций, полученных из природных продуктов. Мы рассмотрим здесь применение спектрофлуориметрии для анализа нефтяных фракций. Видимая флуоресценция нефтяных масел и сложных смесей углеводородов, таких, как вазелин, воск и т. д., была известна давно она обусловлена следами ароматических или гетероциклических соединений, поглощающих в ближней ультрафиолетовой или фиолетовой областях. Эйзенбранд [349, 350] исследовал такое испускание из жидкого парафина и желтого вазелина и дерезнна, возбуждаемых линией ртути 366 нм. Эта флуоресценция в расчете на единицу концентрации суммарного углеводорода слаба и относительно неспецифична. Паркер и Барнс [351] наблюдали гораздо более интенсивную флуоресценцию в ультрафиолетовой области приблизительно при 360 нм, возбуждаемую светом с длинами волн короче 300 нм. Авторы исследовали множество различных типов масел для автомобильных двигателей и нашли, что все они дают по существу одинаковые спектры испускания и возбуждения флуоресценции. Они пришли к выводу, что испускание вызвано не примесями в маслах, а ароматическими углеводородами, присутствующими в этой конкретной фракции самой [c.437]

    Излучение, собранное оптико приемника, направляется через какой-нибудь спектроанализатор к с 1стеме фотодетектирования. Спектроанализатор служит для выделения интервала наблюдаемых длин волн и таким образом отделяет фоновое излучение при других длинах волн. Может быть применен монохроматор, полихроматор или комплект узкополосных спектральных фильтров вместе с фильтром, поглощающим лазерное излучение (кроме случая, когда интерес представляет упруго рассеянный свет). Выбор фотодетектора часто диктуется тем, как ю спектральную область мы исследуем, что в свою очередь определяется характером применения и типом лазера. [c.335]


Смотреть страницы где упоминается термин Типы волн. Области применения: [c.164]    [c.202]    [c.176]    [c.308]    [c.204]    [c.212]    [c.138]    [c.479]    [c.19]    [c.82]    [c.244]    [c.275]    [c.326]    [c.40]   
Смотреть главы в:

Неразрушающий контроль Т3 -> Типы волн. Области применения




ПОИСК





Смотрите так же термины и статьи:

Область применения



© 2025 chem21.info Реклама на сайте