Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь теории образования

Рис. 20-9. Схема образования химической связи во внутри- и внешнеорбитальных комплексах в теории валентных связей. Во внутриорбитальных комплексах кобальта, подобных Со(ЫНз) , шесть электронов металла спин-спарены на и Рис. 20-9. <a href="/info/18430">Схема образования химической связи</a> во внутри- и <a href="/info/347460">внешнеорбитальных комплексах</a> в <a href="/info/18393">теории валентных связей</a>. Во <a href="/info/373249">внутриорбитальных комплексах</a> кобальта, подобных Со(ЫНз) , <a href="/info/1646928">шесть электронов</a> металла спин-спарены на и

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]

    Количественная теория химической связи развивается в настоящее время на основе выводов и методов квантовой механики. Теория ковалентной связи, предложенная Гейтлером и Лондоном (1927) первоначально для описания молекулы Нг, при дальнейшем развитии получила распространение и на другие случаи ковалентной связи. Она описывает ковалентную связь, рассматривая состояние электронов данной электронной пары с помощью уравнений волновой функции Шредингера. Такое рассмотрение получило название метода валентных схем (ВС) или метода локализованных электронных пар. Можно показать, что при образовании связи с помощью -электронов необходимо, чтобы электро- [c.66]


    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Разрабатывая теорию химического строения, Бутлеров не ста зил перед собой задачу выяснения природы химической связи, справедливо считая, что химия в то время еще не была готова к решению этой задачи. Действительно, необходимой предпосыл кой создания теории химической связи было выяснение строения атома. Лишь после того, как стали известны основные черты элеК тронной структуры атомов, появилась возможность для разработки такой теории. В 1916 г. американский физико-химик Дж. Льюис высказал предположение, что химическая связь возникает путем образования электронной пары, одновременно принадлежащей двум атомам эта идея послужила исходным пунктом для разработки современной теории ковалентной связи. В том же 1916 г. немецкий ученый В. Коссель предположил, что при взаимодействии двух атомов один нз них отдает, а другой принимает электроны при этом первый атом превращается в положительно заряженный, а второй — в отрицательно заряженный ион взаиМ ное электростатическое притяжеиие образовавшихся ионов и приводит к образованию устойчивого соединения. Дальнейшее развитие идей Косселя привело к созданию современных представлений [c.119]

    Метод молекулярных орбиталей. Для приближенного представления вида функции основного состояния системы электронов молекулы существуют два метода, основанные на теории валентных связей (ВС) или на теории молекулярных орбиталей (МО). Эти две теории подходят к построению исходной волновой функции совершенно различными путями, а потому отражают разные представления об основном строении молекулы. В методе ВС принимается, что молекула построена из атомов, которые в некоторой степени сохранили свою индивидуальность, несмотря на то, что они участвуют в образовании химической связи. Метод ВС был разработан раньше метода МО. Он дает более наглядное представление о строении молекулы и поэтому его чаще применяют для качественного решения некоторых вопросов. В частности, метод ВС достаточно просто трактует геометрию молекулы. [c.23]


    Хотя теория кристаллического поля оказалась плодотворной в трактовке магнитных, оптических и некоторых других свойств комплексных соединений, она не смогла объяснить положения лигандов в спектрохнмическом ряду, а также са.м факт образования некоторых ком плексов, например, так называемых сэндвичевых соединений — дибензолхрома Сг(СбНб)2, ферроцена Fe ( 51 5)2 и их аналогов. Дело в том, что теория кристаллического поля, учитывая влияние лигандов на центральный ион, не принимает во внимание участия электронов лигандов в образовании химических связей с центральным ионом. Поэтому применение теории кристаллического поля ограничено, главным образом, комплексными соединениями с преимущественно ионным характером связи между центральным атомом и лигандами. [c.598]

    Теория Льюиса (1938—1939) основана на предположении, что сущность химического взаимодействия состоит в образовании электронных октетов вокруг атомов но эта теория не универсальна, так как в настоящее время известно большое число случаев, когда образование соединения не связано с образованием устойчивой октетной конфигурации электронов. Следует [c.472]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Точно установленный состав этого соединения никак ие мог быть объяснен с точки зрения обычных представлений о валентности азота, хлора и водорода. Были известны и другие более сложные соединения, для установления природы которых первоначальное понятие о валентности оказалось явно недостаточным. Альфред Вернер (1866—1919) в 1891 г. для случаев, когда к молекулам соедииений, в которых валентность элементов была полностью насыщена, присоединялись другие молекулы, предложил понятие побочной валентности. Вслед за этим (1893) Вернер разработал координационную теорию для объяснения природы этих молекулярных соединений, которые в дальнейшем были названы комплексными соединениями. В настоящее время механизм образования химических связей в комплексных соединениях вскрыт на основе электронных представлений. Рассмотрим этот механизм на примере образования соединения аммиака с хлороводородом. [c.65]

    Метод валентных связей. Представления об образовании молекулы водорода, развитые Гейтлером и Лондоном, были распространены и на более сложные молекулы. На этой основе возникла теория образования химических связей, которая получила название метода валентных связей. Этот метод основан на представлении о том, что атомы в молекуле удерживаются посредством одной или нескольких электронных пар, причем эти связи тем прочнее, чем в большей степени перекрываются электронные облака взаимодействуюших атомов. Обычно большая степень перекрывания электронных облаков наблюдается на прямой, соединяющей центры атомов. Комбинации двухэлектронных двухцентровых связей, которые отражают электронную структуру молекулы, называют валентными схема.ии. [c.47]

    Электронная теория. Согласно электронной теории, разработанной Льюисом, основание — это соединение, поставляющее электронные пары для образования химической связи,— донор электронных пар кислота — вещество, принимающее электронные пары,— акцептор электронных пар. Кислотно-основное взаимодействие, согласно электронной теории, заключается в образовании донорно-акцепторной связи. В результате взаимодействия кислоты с основанием образуются солеподобные вещества, называемые ад-дуктами. Часто (но не всегда) их удается выделить как индивидуальные соединения. [c.283]

    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]

    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]

    С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в -оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида. [c.81]

    Валентность химических элементов. Под валентностью, как известно, понимают способность атомов данного элемента соединяться с атомами другого элемента в определенных соотношениях, За единицу валентности была принята соответствующая способность атома водорода. Валентность элемента определяли как способность его атома присоединять (или замещать) то или иное число атомов водорода. В связи с возникновением и развитием теории строения атома и химической связи вален гность стали связывать с соответствующими структурно-теоретическими представлениями, а именно с числом электронов, пере-ходян их от одного атома к другому, или с числом химических связей, Bi.l.зпикaк)Lми.x мсж.ау атомами в процессе образования химического соединения. [c.44]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    В настоящее время известно много различных видов химической связи. Теория спин-валентности полностью их не охватывает. Однако она дает достаточно широкую основу для понимания большинства случаев химической связи, главную роль в которых играет спаривание (обобществление) электронов соединяющихся атомов. Можно сказать, что образование обобществленных электронных дублетов, как правило, и является основой химической связи между атомами в молекулах простых и сложных веществ. [c.69]

    Таким образом, идеально ионных соединений не существует, современная теория химической связи объясняет образование ионной связи из ковалентной путем предельно возможного смещения общей электронной пары, В отличие от ковалентной связи ионная связь не обладает направленностью и насыщенностью. [c.116]

    Открытие сложности строения атома и его изменяемости (конец XIX и начало XX в.) вызвало к жизни целый ряд теорий химической связи и образования молекул. Было совершенно ясно, что образование химической связи идет только за счет электронов, окружающих атомное ядро, так как заряд ядра и место атома в периодической системе элементов в химических процессах не изменяются. Однако электронная теория валентности оказалась весьма сложной, и прошло много времени, прежде чем она стала современным учением о химической связи. [c.69]

    Вернемся теперь от теории локализованных молекулярных орбиталей, каковой в сущности является теория валентных связей, к чисто электростатической теории, в рамках которой химическая связь между металлом и лигандами считается ионной. Простая электростатическая теория предсказывает образование октаэдрической координации по той же причине, по которой шесть единичных зарядов, вынужденные двигаться по поверхности сферы, принимают октаэдрическое расположение, продиктованное требованием минимальной энергии. Здесь мы, в сущности, имеем дело с уже известными нам из разд. 11-3 представлениями об отталкивании электронных пар. [c.228]

    Для выяснения физического смысла предэкспоненциального множителя можно исходить из теории столкновения молекул. Для того чтобы молекулы могли прореагировать друг с другом, они должны встретиться, и в результате соударения должны произойти необходимые разрывы одних химических связей и образование других. Частота столкновений молекул может быть рассчитана на основании молекулярно-кинетической теории. [c.22]

    Ионная связь характерна для многих неорганических соединений таких, как кислоты, щелочи и соли (электролиты). Так, Коссель, создав в 1915 г. теорию ионной связи, возродил через 70 лет идею Берцелиуса о природе химической связи как взаимодействии двух противоположно заряженных частиц. С помощью теории Косселя не удается, однако, объяснить возникновение химической связи и образование многих веществ например, простых, состоящих из одинаковых атомов или из атомов элементов близкой или одинаковой электроотрицательности, а также многочисленных органических соединений, молекулы которых в водном растворе не распадаются на ионы. [c.147]

    Открытие сложности строения атома и его изменяемости (конец XIX и начало XX в.) вызвало к жизни целый ряд теорий химической связи и образования молекул. [c.66]

    В большинстве координационных комплексов атом металла использует для образования связей меньше девяти орбиталей. Познакомимся с теориями, созданными для объяснения химической связи в этих соединениях [c.222]

    Обнаружено, что некоторые комплексы платины являются активными противораковыми препаратами. К их числу относятся 1 ис-Р1(ННз)2С14, 1/ис- 1 (ННз)2С12 И цис-Р1 (сп)О2 (ни один из транс-изомеров не эффективен в этом отношении). Воспользуйтесь теорией валентных связей для объяснения диамагнетизма этих комплексов. Являются ли эти комплексы внутриорбитальными или внешнеорбитальными Какие гибридные орбитали используются для образования химических связей в этих комплексах  [c.250]

    Адсорбционная теория пассивности. Основной механизм защиты металлов, согласно адсорбционной теории пассивности, заключается в насыщении валентностей поверхностных атомов металла путем образования химических связей с адсорбирую- [c.63]

    Описание химической связи в металлах, ионных и молекулярных кристаллах, комплексных соединениях в настоящее время основывается все еще на различающихся между собою модельных представлениях. Мы вправе ожидать, что различные типы химической связи, существующие в твердых телах, могут проявляться и в явлениях гетерогенного катализа. Это положение находит свое отражение в существующих теориях катализа. В мультиплетной теории [1] на первое место выдвигается представление о валентно-химической связи, в то время как в электронной теории катализа на полупроводниках [2]— адсорбционно-химическая связь, в образовании которой играют роль электроны проводимости и электронные дырки. Эти представления о природе химической связи, обусловливающей образование переходных активированных комплексов на поверхности катализатора, не являются, конечно, единственными, или даже г,11авными характеристиками соответствующих теорий. Так, в мультиплетной теории, несомненно, важнейшей стороной является стереохимия катализа — пространственные соотношения и принцип структурного соответствия между расположением атомов в реагирующих молекулах и симметрией атомов на поверхности катализатора. [c.86]

    Согласно простейшим представлениям о химической связи, устойчивость молекулы определяется существованием в ней отдельных двухэлектронных связей, соединяюпдих между собой пары атомов. Для подавляющего большинства молекул удается подобрать набор стандартных значений энергий связей, который позволяет воспроизводить экспериментальные теплоты образования молекул с точностью до 5-10 кДж. Однако для некоторых молекул результаты подобных расчетов значительно отклоняются от экспериментальных данных. Подлинная устойчивость таких молекул оказывается намного больше или, наоборот, меньше, чем предсказывают расчеты, основанные на представлениях простой теории локализованных связей. Появление подобных расхождений указывает, что в рассматриваемом случае простая модель локализованных связей неприменима. Молекулы с напряженной структурой могут оказаться менее устойчивыми, чем предсказывают тгрмодина. шческие расчеты, а молекулы с делокализацией электронов - более устойчивыми. [c.36]

    Тот факт, что атомные орбитали в квантовой теории имеют определенную геометрическую форму, весьма важен, так как позволяет судить о стереохимии молекулы. 5- и р-Орбитали так мало отличаются по энергии, что при образовании химической связи они могут взаимодействовать в атоме друг с другом, образуя несколько смешанных орбиталей. Такая орбиталь описывается волновой функцией, являющейся линейной комбинацией - и р-орбиталей, и называется гибридной. Гибридные орбитали более вытянуты в направлении связи и способствуют образованию более прочной связи. Кроме 5- и р-орбиталей в образовании гибридных орбиталей могут участвовать -орбитали. [c.22]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]

    Особенно быстрый прогресс современной химии был вызван проникновением в эту науку представлений об электронном строении атомных и молекулярных оболочек. Не случайно дальнейшее развитие теории химического строения А. М. Бутлерова и положений В. В. Мар-ковникова о взаимном влиянии атомов в молекуле связано с установлением электростатического характера химической связи, а затем — ее электронной природы. Химическая связь —центральная, главнейшая проблема химии. Поэтому некоторые химики справедливо полагают, что раскрыть природу, характер химической связи, закономерности образования и разрушения ее —значит раскрыть механизм и существо процесса превращения веществ, т. е. самую суть химического движения. [c.40]

    Вопрос о механизме действия среды на стеклообразные ПК и ПС был рассмотрен в работе [97]. Автор показал, что появление микротрешин в образце происходит несколько раньше, чем достигается предел вынужденной эластичности полимера в среде. Напряжение, при котором появляется первая микротрещина, автор рассматривал в зависимости от температуры и скорости деформации с помощью теории вязкого течения Эйринга. Из полученных данных автор сделал вывод, что при вытяжке полимера в среде (спирты и углеводороды) не происходит разрыва химических связей, а образование микропустот, характерныд [c.112]

    Метод молекулярных орбиталей. Метод валентных связей дал удовлетворительное истолкование целому ряду фактов, таких, как нанравленность связей, способность атомов к образованию определенного числа связей, особенности структуры и свойств ряда молекул. Одиако этот метод не объяснил существования довольно прочного молекулярного иона водорода Н, , содержащего только один электрон, а также упрочения химической связи при отрыве электронов от некоторых молекул. Для этих фактов была предложена другая теория, получившая название метода м.ол кулярных орбиталей. [c.49]

    В- одном случае наружный электрон атома оттягивается атомом другого элемента. В результате оба атома приобретают электрические заряды один атом из-за потери одного или нескольких электронов заряжается положительно, другой вследствие приобретения чужих электронов — отрицательно. Такая связь названа ионной химической связью. Теорию ее разработал в 1915 г. немецкий ученый Коссель. В другом случае каждый из реагирующих атомов выделяет по одному или более электронов на образование одной или нескольких электронных пар, принадлежащих одновременно обеим атомам. Атомы остаются нейтральными, но связываются в молекулу одной или несколькими обобщенными парами электронов. Образующаяся связь названа ковалентной химической связью. Теорию ее впервые предложил английский ученый Льюс в 1916 г. [c.55]

    Наглядное представление о возникновении строго определенной ориентации химических связей дает образование молекулы воды. При сближении двух атомов водорода Н (15 ) с атомом кислорода О (2р12р12р г) Ь-орбиталь одного из атомов, Н перекрывается с 2р,-орбиталью кислорода и образуется вторая связь О—И (рнс. 4.20). ру- и рг-Орбитали ориентированы в пространстве по осям у к г. Угол между осями равен 90°. Следовательно, в соответствии с методом ВС валентный угол в молекуле воды Ос = 90°. Экспериментальное значение этого угла несколько выше Ос = 104°. Для простой теории это очень хорошее предсказание. Имеющееся расхождение объясняется поляризацией связи. [c.175]

    Обсуждение вопроса о происхождении нефти в монографии, посвященной химии нефтяных углеводородов, представляет интерес в связи с тем, что образование нефти является химическим процессом, включающим образование углеводородов из неуглеводородного исходного материала, а также потому, что большое число и разнообразие углеводородов нофти может быть объяснено удовлетворительно только на основе теорий органических реакций, которые развивались в последние годы. [c.78]

    Представления Гейтлера и Лондона о механизме образования химической связи оказались чрезвычайно плодотворными и послужили основой для объяснення и приближенного расчета связи в более сложных молекулах. Эти представления легли в основу теории химической связи, получившую название метода валентных связей (сокращенное обозначение ВС). Значительный вклад в [c.83]

    Объяснение химической связи в комплексах с помощью электростатических представлений. Начало разработки теории, объясняю1цей образование комплексных соединений, связано с исследованиями Косселя и Магнуса (Германия), проводимыми ими в 1916—1922 гг. В ее основу были положены электростатические представления. Ион-комплексообразователь притягивает к себе как ионы противоположного знака, так н полярные молекулы. С другой стороны, окружающие комплексообразователь частицы отталкиваются друг от друга, прп этом энергия отталкивания тем значительней, чем больше частиц группируется вокруг центрального иона. [c.119]


Смотреть страницы где упоминается термин Химическая связь теории образования: [c.2]    [c.11]    [c.66]    [c.116]    [c.128]    [c.42]    [c.22]    [c.28]    [c.59]   
Органические аналитические реагенты (1967) -- [ c.31 , c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Связь теория

Теория химическои связи

Теория химической связи

Химическая связь

Химическая связь образование

Химическая связь связь

Химическая теория

Химический связь Связь химическая



© 2024 chem21.info Реклама на сайте