Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин в коллагене

    Поскольку коллаген содержит большое числот остатков глицина и пролина, имеет смысл сначала рассмотреть данные о структуре двух синтетических полипептидов — полиглицина и поли-Ь-пролина — и лишь затем перейти к структуре коллагена. [c.250]

    Эластин в отличие от коллагена обнаружен в основном в связках (лигаментах) и больших кровеносных сосудах, которые должны быть эластичными. Подобно коллагену, эластин богат глицином, аланином и пролином и не содержит цистеина, однако в от- [c.575]


    Коллаген. Фермент коллагеназа расщепляет коллаген на пептиды, в которых N-концевым остатком является глицин. Эта аминокислота входит во все пептиды, образующиеся при расщеплении коллагена. В наибольшем количестве встречается пептид с последовательностью Гли-Про-Оксипро. За ним следует пептид Гли-Про-Ала. Поскольку на глицин приходится более 7з аминокислотного состава коллагена, приведенные выше данные о составе пептидов делают весьма вероятным предположение о том, что каждым третьим аминокислотным остатком в молекуле коллагена является глицин. [c.252]

    ЖЕЛАТИНА — продукт переработки коллагена, распространенного в природе белкового вещества, образующего главную составную часть соединительной ткани позвоночных, особенно в коже, оссеине костей и в сухожилиях. Но аминокислотному и элементарному составу Ж. близка к коллагену. Главнейшие к-ты глицин (ок. 27%), пролин (ок. 16%), оксипролин (ок. 14%), глутаминовая к-та (ок. 12%), аргинин (ок. 9%), лизин (ок. 5%). Элементарный состав Ж. 48,7—51,5% С 6,5—7,2% Н 17,5—18,8% N 24,2—26,8% О 0,3—0,7% 8. В Ж. ок. 15% НгО и ок. 1% золы. Лучшие сорта Ж. слабо окрашены в желтый цвет <1 1,3—1,4 Ид 1,5 средний мол. в. ок. 60000 благодаря наличию в Ж. кислых (карбоксильных) и основных (амино) групп она имеет амфотерный характер. Ж., полученная по щелочному способу, имеет изоэлектрич. точку при pH 4,8—5,1, а полученная по кислотному способу — при pH ок. 9. Ж. набухает в воде и при нагревании растворяется при охлаждении р-р Ж. образует студень (гель), к-рый при нагревании опять переходит в р-р. Темп-ра застудневания и прочность студня зависят от концентрации р-ра и качества Ж. Основными критериями качества Ж. являются вязкость р-ра, прочность студня, темп-ра его плавления и застудневания, измеренные при определенных условиях. В конц. р-рах нек-рых веществ (нанр., роданистого калия, бензолсульфоната натрия и др.) Ж. растворяется на холоду. Эти же вещества препятствуют образованию студня. Под действием дубителей Ж. теряет снособность набухать в воде и растворяться. [c.8]

    Особенностью коллагена является необычно высокое содержание глицина (1 остаток на каждые 3 аминокислотные остатка), пролина (1 на 8 остатков) и оксипролина (1 на 10 остатков). Коллаген содержит также редко встречающуюся аминокислоту — оксилизин. Таким образом, приблизительно каждым четвертым звеном в белковом ске- [c.654]

    Коллаген — основной фибриллярный белок кожи, сухожилий, хрящей, костей, роговицы глаза, стенок артерий и других тканей. Коллаге-новые фибриллы — важный компонент межклеточного вещества, цементирующего клетки в тканях (важными связующими веществами являются также гиалуроновая кислота и другие мукополисахариды). От большинства других белков коллаген отличается высоким содержанием остатков пролина и оксипролина, которые составляют 25% всех аминокислотных остатков, а также глицина, остатки которого составляют 34%. В процессе синтеза коллагена вначале образуется белок проколлаген. Он не содержит оксипролина и коллаген образуется пз него при гидроксилировании примерно половины остатков пролина. Для протекания реакции гидроксилирования необходим витамин С. [c.434]


    Очевидно, эта аминокислота не проявляет особенно интересных химических свойств, а ее биологическое значение сводится к роли структурного элемента в тех случаях, когда важно располол<ить структуру в небольшом объеме (компактно). Структурные белки (коллаген, шелк, шерсть) содержат значительные количества глицина. [c.28]

    Волокнистые, фибриллярные белки, называемые коллагенами, составляют основу органической части костной ткани, тканей хрящей и сухожилий. Коллагены нерастворимы в воде, и лишь некоторые из них удается перевести в раствор. В молекуле коллагена много остатков глицина и пролина и, кроме того, имеется еще аминокислота оксипролин, не встречающаяся в других белках зато коллаген лишен серусодержащих аминокислот цистина и цистеина, в нем почти нет и метионина. Структура молекулы коллагена плохо изучена. Предполагается, что молекула этого белка имеет замкнутую структуру. [c.60]

    Для получения эластина, структурного белка эластических волокон, используют обычно шейную связку быка. По своим свойствам эластин напоминает коллаген, но отличается от коллагена еще большей устойчивостью к действию протеолитических ферментов, кислот и оснований. Эластин подобно коллагену также характеризуется высоким содержанием глицина. Оба белка содержат примерно одинаковые количества этой аминокислоты, но содержание пролина и оксипролина в эластине намного ниже, чем в коллагене (см. табл. 1) [51]. [c.214]

    Общими для эластина и коллагена являются большое содержание глицина и пролина, наличие оксипролина, хотя последнего в эластине примерно в 10 раз меньше, чем в коллагене. Как и в коллагене, в эластине мало метионина и отсутствуют триптофан и цистеин. [c.664]

    Коллаген получают из кожи, связок и сухожилий животных, он богат глицином и пролином. [c.150]

    В отличие от белков к-т-е- -группы фибриллярные белки группы коллагена растяжимы не более чем на 10%. Рентгенограммы белков этих двух групп также различны. Коллаген не встречается в растениях, но составляет около 7з всех белков организма животных, являясь составной частью хрящей, сухожилий, костей и кожи. Анализ аминокислотного состава коллагена показывает, что на 7з он состоит из глицина. Цистеин и триптофан в нем не встречаются, а количество серусодержащих и ароматических аминокислот очень невелико. Около 20% аминокислот в коллагене составляют пролин и оксипролин. Последняя аминокислота, так же как и оксилизин, встречается только в коллагене и родственных ему белках. Есть основания считать, что гидроксильные группы этих аминокислотных остатков появляются в белке уже после синтеза всей полипептидной цепочки. [c.249]

    По структуре коллаген отличается от других фибриллярных белков. Каждая полипептидная цепь имеет конформацию левой спирали, а три такие цепи удерживаются вместе водородными связями и образуют правую трехнитевую спираль. Исходя из этой структуры, можно понять, почему каждый третий аминокислотный остаток в полипептидной цепи коллагена — глицин три цепи удерживаются межцепочечны-ми водородными связями так тесно, что пространство между ними до-статочно лишь для боковой цепи, размеры которой не больше атома водорода. Расположенные плотно цепи атомов, соединенные ковалентными связями, обеспечивают такому фибриллярному белку исключительную прочность — волокно сухожилий имеет почти такой же предел прочности на растяжение, как и проволока из малоуглеродистой стали того же диаметра. В сухожилиях полипептидные цепи вытянуты вдоль оси ткани, в то время как ткань роговицы глаза образована чередующимися слоями, в которых цепи расположены под прямыми углами одна относительно другой. [c.435]

    Коллаген не имеет полного набора аминокислот, но, как и фиброин, содержит много глицина (табл. 31), поэтому служит источником для его получения. Обладает высокой набухаемостью. Установлено, что в молекуле коллагена три сильно растянутые полипептидные цепочки, а поэтому спирали тоже вытянуты. Су ще- [c.217]

    Склеропротеины (альбуминоиды). Эта группа фибриллярных белков, выполняющих в организме животных роль опорных и покровных веществ. Они практически нерастворимы и весьма устойчивы к химическим и ферментативным воздействиям. Скле ропротеины характеризуются тем, что в них отсутствуют неко торые аминокислоты, но содержание других высокое. Например много глицина в коллагене и фиброине, цистина в кератине) К склеропротеинам относятся коллаген, эластин, ретикулин кератины, нейрокератин, фиброин шелка, конхиолин и спонгин [c.176]

    Коллаген — фибриллярный белок, составляющий основную массу соединительной ткани хрящей. Особенность его в том, что 30% его аминокислот представлено глицином и 25% — иминокислотами — пролином и оксипролином. Основа структуры коллагена — тройные спирали, состоящие из трех полипептидных цепей. Креатин — см. Креатинфосфат. [c.21]

    Глицин—иервая выделенная из белков аминокислота Содержится в больших количествах в коллагене ( 25%) и фиброине шелка ( 40%). Благодаря наличию метиленовой группы способна к реакциям конденсации. Специфической реакцией на глицин является взаимодействие с орто-фталевым альдегидом с образованием окрашенного в зеленый цвет соединения Ы-Метильное производное глицина—саркозин HзNH— —СНг—СООН найден в актнномицине и карнозине. [c.470]


    По форме молекул белки можно приблизительно делить на две группы — склеропротеины и сферопротеины. Первые имеют волокнистую структуру и служат строительным материалом тканей. К ним относится коллаген, содержащийся в коже, сухожилиях, хрящах и костях. Коллаген построен в основном из глицина, пролина и оксипролина. При частичном гидролизе он превращается в желатину. Коллаген составляет почти одну треть всех животных белков. Другие склеропротеины — кератин, содержащийся в волосах, ногтях, перьях и шерсти, и фиброин из натурального шелка. В мышечных волокнах присутствуют главным образом белки миозин и актин. Они не растворяются в воде и активно участвуют в механохимических процессах, обусловливающих работу мышц. Поскольку тела млекопитающих примерно на 40% состоят из мышц, оба этих белка относятся к наиболее распространенным органическим соединениям в организмах млекопитающих. [c.194]

    Другой фибриллярный белок — коллаген — богат глицином и пролипом. В силу этого коллаген не способен образовывать ни а-спираль, ни складчатую р-структуру. Этот весьма важный белок построен из трех лево-вращающихся спиралей, которые переплетаются, давая правовращающую [c.410]

    Хар актеризуя в целом особенности вторичной структуры фибриллярных белков, следует подчеркнуть, что для больш инства этих белков характерна а-1Конфигурация полипептидных цепей. Отступление от этой структуры наблюдается у тех белков, у которых обнаруживаются резкие отклонения от закона статистичности в расположении аминокислотных остатков —скопление некоторых видов остатков на отдельных фрагментах молекулярных цепей. В фиброине щелка — скопления остатков глицина, аланина и серина, в коллагене — скопления остатков пролина, оксипролина и глицина. [c.543]

    Преобладание в белках какой-то одной аминокислоты — довольно редкое событие. Коллаген же содерн<ит 337о глицина, 21% приходится на пролин + оксипролии и 11% составляет аланин. Все дело в том, что крупные по размеру боковые группы не могут уместиться внутри тройной спирали. То н<е самое относится и к фиброину шелка, который состоит в основном из периодически повторяющейся последовательности [c.92]

    Коллаген - самый распространенный белок высших животных, на его долю приходится 1/3 всей массы белков. Это белок с уникальной фибриллярной третичной структурой, его волокна выдерживают нагрузку в 5000-10000 раз больше их массы. Интересно, что в составе коллагена 15% АК приходится на глицин, 11% - на аланин, а 21% АК - на пролин и окси-пролин. Коллагеновые волокна стабилизированы многими дисульфидными связями, поэтому они весьма прочны и слабо растяжимы. Удлинение волокон требует разрьша этих связей, а для их восстановления они должны быть снова окислены до 8-8-мостиков. [c.26]

    Видимые в оптическом микроскопе коллагеновые волокна состоят из различимых в электронном микроскопе фибрилл—вытянутых в длину белковых молекул, названных тропоколлагеном. Тропоколлаген —основная структурная единица коллагена (рис. 21.2). Необходимо четко разграничивать понятия коллагеновые волокна и коллаген . Первое понятие по существу является морфологическим и не может быть сведено к биохимическим представлениям о коллагене как о белке. Коллагеновое волокно представляет собой гетерогенное образование и содержит, кроме белка коллагена, другие химические компоненты. Молекула тропоколла-гена—это белок коллаген. Одной из отличительных черт данного белка является то, что /з всех его аминокислотных остатков составляет глицин, 7з —пролин и 4-гидроксипролин, около 1%—гидроксилизин некоторые молекулярные формы коллагена содержат также 3-гидроксипролин, хотя и в весьма ограниченном количестве  [c.662]

    Тропоколлаген — основная структурная единица коллагена, имеет молекулярную массу 285 ООО и состоит из трех полипептидных цепей — двух а1 и одной а2. Эти цепи находятся в особой, присущей лишь коллагену конформации и образуют тройную спираль. Аминокислотный состав цепей необычен и характеризуется высоким содержанием остатков глицина и пролина, а также наличием остатков 4-гидроксипролииа и 5-гидроксилизииа. В аминокислотной последовательности цепей практичес сн на каждом третьем месте находится остаток глицина, и наиболее часто повторяющийся фрагмеит пептидной цепи имеет структуру [c.258]

    Основную часть мономерных звеньев в молекуле коллагена составляют глицин, пролин и оксипролин. Хотя содержание амино- и иминокислотных остатков меняется от образца к образцу, в коллагене позвоночных и беспозвоночных содержание глицина остается постоянным и составляет приблизительно треть всех звеньев. Несмотря на различия в составе коллагенов, существует взаимосвязь между темиературой плавления (опре-деленной при фиксированной полной концентрации белка) и содержанием иминокислот. [c.133]

    Эластин и коллаген не растворяются в воде. Их полипептидные цепи содержат большое количество глицина, пролина и падроксипролина. [c.81]

    В. с., макромолекулы к-рых содержат несколько типов мономерных звеньев, наз. сополимерами. В зависимости от характера распределения звеньев в макромолекулах различают регулярные и нерегулярные сополимеры. В регулярных сополимерах распределение различающихся мономерных звеньев характеризуется определенной периодичностью. Простейшими примерами могут служить чередующиеся сополимеры стирола с малеиновым ангидридом и нек-рых олефинов с ЗОг, построенные по принципу. ..АВАВАВ... (А и В — различные мономерные звенья), и др. Возможны и более сложные регулярные последовательности чередования звеньев, что, в чгастности, характерно д.ття различных аминокислотных остатков в нек-рых белках, напр, глицин — пролин — оксипролин в коллагене, В нерегулярных сополимерах распределение звеньев случайное. Это характерно для многих синтетич. сополимеров. В нуклеиновых к-тах и в большинстве белков нерегулярные последовательности звеньев задаются соответствующим кодом и определяют биохимич. и биологич. специфичность соответствующих соединений. Сополимеры, в к-рых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, наз. блоксополимерами (см. Блоксополи.меры). Последние наз. регулярными, если длины блоков и их чередование подчиняются определенной периодичности. При уменьшении длины блоков различие между блок-сополимерами и статистич. сополимерами постепенно утрачивается. [c.272]

    ОКОЛО 800 аминокислотных остатков. Подобно коллагену, эластин богат глицином и аланином. Тропоэластин отли- [c.180]

    Основной белок кожи и соединительных тканей носит название коллаген и состоит преимущественно из глицина, пролина и окси-пролина. Молекулы коллагена имеют форму тонких и длинных нитей (14x2900 А) каждая из нитей состоит из трех скрученных полипептидных цепочек. При кипячении коллагена в воде цепочки отходят одна от другой и образуется обычный пищевой желатин. Соединительные ткани и кожа состоят из фибрилл шириной 200— 1000 A, которые, как это было показано рентгенографическим методом, состоят из молекул коллагена, расположенных параллельно большой оси. На электронной микро( тографии видны правильно расположенные полосы, отстоящие друг от друга на расстоянии 700 A и пересекающие фибриллы предполагают, что эти полосы соответствуют молекулам коллагена, расположенным в одном направлении параллельно друг другу, но сдвинутым одна относительно другой приблизительно на одну четвертую их длины (рис. 29-9). [c.526]

    Было сделано немало попыток интерпретировать эти рентгенограммы. Описанная ниже модель, названная коллаген II , вероятно, достаточно близка к истине, по крайней мере в своих основных чертах (фиг. 48). В этой модели три полипептидные цепочки свиты в правую слегка закручивающуюся тройную спираль, что обеспечивает некоторую растяжимость. На один шаг спирали, равный 28,6 А, приходится 10 аминокислотных остатков. Каждая из трех цепочек, входящих в тройную спираль, является в свою очередь левой спиралью (это связано с наличием в ней пролина) с шагом 3 28,6 А. Вблизи оси тройной спирали должны располагаться лишь глициновые остатки. Таким образом, глицин является существенным элементом структуры. Концепция тройной спирали подтверждается также результатами исследований светорассеяния (см. разд. 3 гл. VIII). [c.254]

    Так, например, протамины характеризуются очень высоким содержанием аргинина (до 80%) и полным отсутствием лейцина и глютаминовой кислоты. Для гистонов характерно высокое содержание аргинина и лизица, практически полное отсутствие триптофана и цистина и очень малое содержание других циклических аминокислот — тирозина и фенилаланина. В сывороточном альбумине содержатся равные количества лейцина и изолейцина в фиброине шелка очень много глицина (50%), аланина и серина (примерно по 25%). Очень высокое содержание глицина (до 30%) обнаружено и в коллагене кроме того, это единственный белок, содержащий оксипролин и оксилизин. [c.61]

    Модель диффузии воды в коллагене. Из приведенного анализа следует, что в низкотемпературной фазе коллагена молекулы воды располагаются главным образом в характерных для льда позициях в центрах тетраэдрических группировок из четырех других молекул воды (Г-позиции). В процессе диффузии по Г-позициям локальное поле усредняется до нуля, и ответственным за конечную величину и наличие тонкой структуры спектра ЯМР следует считать исключительно позиции, занимаемые молекулами воды па самой поверхности белковых молекул. К ним можно отнести 1) заряженные и полярные группы боковых звеньев, в частности ОН-группы гидроксипролина 2) атомы кислорода карбонильных групп глицина и гидроксипролина, не занятые межцепьевыми водородными связями 3) ТУЯ-групны аминокислотных остатков, занимающих регулярные позиции пролина и гидроксипролина. [c.126]


Смотреть страницы где упоминается термин Глицин в коллагене: [c.669]    [c.266]    [c.423]    [c.266]    [c.126]    [c.275]    [c.296]    [c.27]    [c.655]    [c.105]    [c.107]    [c.211]    [c.288]   
Органическая химия. Т.2 (1970) -- [ c.668 , c.669 ]

Принципы структурной организации белков (1982) -- [ c.90 ]

Принципы структурной организации белков (1982) -- [ c.90 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.654 , c.655 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.180 , c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния

Коллагены



© 2025 chem21.info Реклама на сайте