Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антропова

    Термины потенциал нулевого заряда (и. н. з.) и нулевая точка (н. т.) употреблялись как синонимы, что приводило и приводит к путанице. Представляется целесообразным, по предложению Антропова, разграничить эти понятия, присвоить каждому из них свой символ и употреблять в соответствии с их содержанием. Целесообразность такого разграничения подкрепляется следующей аналогией. Потенциал нулевого заряда S q= , подобно равновесному потенциалу может для данного металла и раствори- [c.250]


    Рациональная шкала Грэма представляет собой частный случай приведенной шкалы Антропова применительно к ртутному электроду. Каких-либо попыток сформулировать более общее понятие рациональной шкалы, распространить ее на другие металлы и использовать ее для сопоставления зарядов и условий адсорбции на различных электродах в работах Грэма не излагается. Термин рациональная шкала нельзя признать удачным. Действительно, как отмечалось выше, применение шкалы, основанной на нулевых точках, может оказаться рациональным в одних случаях и нерациональным в других. Кроме того, он в отличие от термина приведенная шкала не отражает самой сущности этой шкалы. Наконец, рациональная шкала была предложена позднее, чем приведенная шкала, и относилась лишь к ртути (распространение ее на другие металлы в том виде, в каком она была дана Грэмом, превратило бы ее в абсолютную шкалу Оствальда). В дальнейшем поэтому везде будет использоваться термин приведенная шкала потенциалов . [c.254]

    Такой мето,д нахождения расчетного уравнения (11.65) был предложен Антроповым и Фрумкиным (1965). [c.257]

    Расчетные значения дг по Антропову (1965) [c.259]

    Эти соображения, высказанные Л. И. Антроповым, привели его к заключению о существовании двух крайних групп металлов с различным механизмом перенапряжения водорода. К первой нз них относятся металлы групп платины и железа, обладающие высокой адсорбционной способностью по отношению к водороду. На этих металлах стадия рекомбинации должна играть решающую роль в кинетике катодного выделения водорода. Вторая группа включает ртуть, свинец, кадмий и другие металлы, почти не адсорбирующие водород. На металлах второй группы кинетика выделения водорода определяется стадией разряда. [c.412]

    Эти выводы, сформулированные Антроповым (1945), не связаны ни с предположениями о природе замедленной стадии, ни с какими-либо специальными допущениями о природа сил, вызывающих изменение адсорбируемости деполяризатора с потенциалом. Они основаны только на результатах чисто экспериментальных работ по электрокапиллярным явлениям, а также на концепции приведенной шкалы потенциалов. [c.449]

    Токи обмена о для ряда электродов в воДных растворах при комнатной температуре (по Л. И. Антропову) [c.154]

    Экспериментальные потенциалы нулевых зарядов металлов 1 (о) в водных растворах (по Л. И. Антропову) [c.163]


    Сопоставление потенциалов нулевых зарядов V (0) некоторых металлов в водных растворах, в расплавах н вычисленных по уравнению (290) из работы выхода электрона из металла (по Л. И. Антропову) [c.165]

    Стандартные потенциалы металлов в водных растворах при 25° С в шкале нулевых точек ф° (по Л. И. Антропову) [c.165]

    Следует отметить большую эффективность предложенной и разработанной И. Л. Розенфельдом, Л. И. Антроповым и А. Т. Петренко комбинированной катодно-ингибиторной защиты, сочетающей применение замедлителей катионного типа с защитной катодной поляризацией и превышающей частные защитные эффекты от катодной поляризации и от введения ингибитора коррозии. [c.349]

    В настоящее время нет единой классификации электродов по типу электродных реакций. В данном пособии принята классификация, изложенная в книге Л. И. Антропова Теоретическая электрохимия . Изд-во Высшая школа . 1969. [c.277]

    Оценка природы преимущественно адсорбирующихся частиц, и знака заряда металла стала возможной лишь после того, как Л. И. Антроповым [8] была предложена приведённая шкала потенциалов ф = е — E v (где е — потенциал металла в данных условиях, e v — потенциал нулевого заряда, или нулевая точка ). [c.341]

    По данным Л. И. Антропова и М. И. Быковой [19], подвод частиц к катоду совершается главным образом за счет перемешивания и седиментации электрофоретические явления играют второстепенную роль. Попадая на поверхность катода, дисперсные частицы удерживаются на ней за счет сил электростатического притяжения (при положительном заряде частиц), адгезионной связи с металлом, а также в результате проникания их в поры, капиллярные пустоты и т. п. Частицы закрепляются в покрытии вследствие зарастания их осаждающимся металлом. [c.353]

    I-. Таким образом, на границе раздела электрод — раствор возникает некоторый дополнительный скачок потенциала, вызывающий сдвиг п. н. 3. в растворе Nal в отрицательную сторону по сравнению с п. н. з. в растворе NaF. При определении изменения гальвани-потенциала Арф в растворах поверхностно-активных электролитов целесообразно вести отсчет потенциала от п. н. з. того же электрода, но в растворе поверхностно-неактивного электролита (от его нулевой точки). Такой способ отсчета потенциала, впервые предложенный Л. И. Антроповым, называют приведенной шкалой потенциалов. Измеренные таким образом потенциалы электрода обозначают через фо. [c.28]

    С точки зрения образования двойного электрического слоя существенным является то, что к специфически адсорбированным ионам иода уже за счет кулоновского взаимодействия притягиваются катионы Na, которые располагаются дальше от поверхности электрода, нежели анионы Г. Таким образом, на границе раздела электрод — раствор возникает некоторый дополнительный скачок потенциала, вызывающий сдвиг т. н. з. в растворе Nal в отрицательную сторону по сравнению с т. н. з. в растворе NaF. При оценке изменения гальвани-потенциала фр в растворах поверхностно-активных электролитов целесообразно вести отсчет потенциала от т. и. з. того же электрода, но в растворе поверхностно-неактивного электролита. Такой способ отсчета потенциала, впервые предложенный Л. И. Антроповым, в настоящее время называют приведенной шкалой потенциалов. Измеренные таким образом потенциалы электрода обозначают через фо. [c.30]

    Ф — потенциал электрода в приведенной шкале (шкале Антропова), В  [c.6]

    Значение потенциала электрода, отсчитанное от его потенциала нулевого заряда д=о, называется потенциалом электрода ф в приведенной шкале потенциалов (шкале Антропова Л. И.)  [c.36]

    Зная, как протекает адсорбция поверхностно-активных веществ хотя бы на одном из металлов, например на ртути, можно, используя предложенную Л. И. Антроповым [6], приведенную или ф-шка-лу, найти наиболее вероятную область потенциалов, в которой следует ожидать адсорбцию тех же самых веществ на поверхности любого другого металла. [c.133]

    Рассматривая закономерности адсорбции на твердых электродах, следует указать на метод выбора ПАВ, предложенный Л. И. Антроповым. В основе метода лежит предположение об одинаковой модели строения двойного электрического слоя и одинаковой адсорбируемости ПАВ на ртути и на твердом металлическом электроде. Измерения адсорбции на ртутном электроде переносятся на металлический электрод с учетом так называемой рациональной шкалы потенциалов. [c.376]

    Под общей редакцией д-ра хим. наук проф. Л. И. Антропова [c.3]

    При этом условии силы электростатического и специфического взаимодействия (I рода) между добавкой и металлом будут для разных металлов приблизительно одинаковы, что создает возможность переноса данных по адсорбции, полученных на одном металле (ртуть), на другие металлы (цинк, железо). Эту точку зрения разделяют многие ученые. Так, в одной из своих последних работ А. Н. Фрумкин писал В первую очередь следует отметить, что сопоставление адсорбируемости должно производиться при потенциалах, равноотстоящих от точек нулевого заряда соответствующих металлов, как это было справедливо указано Л. И. Антроповым [172]. Коррозионный потенциал Есо, определить легко, но значения EN до сих пор еще не вполне надежны. По мере совершенствования методики определения нулевых точек на основе кривых дифференциальной емкости все отчетливее проявляется тенденция к [c.31]


    Определеиная таким образом нулевая точка была выбрана за нуль в приведенной шкале, или 1р-шкале, потенциалов, предложенной Антроповым (1940—1951). Г1отенциал ср в приведенной шкале определяется как разность между потенциалом электрода в данных условиях н сто пулевой точкой  [c.252]

    Уравнеине (11.65) можно получить, как это было показано Антроповым (1965), из общего уравнения для равновесного потенциала электрода в водород-ион шкале [c.257]

    Электрохимическая кинетика, однако, должна учитывать и такие факторы, которые типичны только для иее и ие играют какой-либо роли в условиях обычных химических реакций. Прежде всего ЭТО нотенциал электрода, оказывающий чрезвычайно сильное в.оз-действие не только на скорость, но и на направление протекания электрохимических реакций и далее на природу ее продуктов. Кро.ме нотенциала электрода на про гекание электрохимических реакций существенное влияние оказывает заряд электрода, который 1 нервом ирнближеинн можно оце)1ить но величине потенциала в прнведепнон шкале /I. И. Антропова. [c.291]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    Ранее считалось, как само собой разумеющееся, что поверхность катода всегда отрицательна, причем тем более отрицательна, чем менее электроположителен электродный металл. Эта точка зрения, сохранившая известное распространение и в настоящее время, ошибочна. Заряд поверхности металла не определяется ни той ролью, какую металл играет в электрохимическом процессе (т. е. является ли он катодом или анодом), ни его электродным потенциалом в данных условиях. Заряд поверхности электрода можно оценить, если воспользоваться предложенной Л. И. Антроповым приведенной, или ф-шкалой потенциалов. Потенциал электрода в ф-шкале представляет собой разность между его потенциалом II данных конкретных условиях (например, в процессе электроосаждеиия металла) и соответствующей нулевой точкой. Потенциал электрода в приведенной шкале служит мерой заряда поверхности и позволяет предвидеть, адсорбция каких именно ионов будет наиболее вероятной в данных условиях. Это положение можно проиллюстрировать на примере катодного выделения никеля, цинка, кадмия н сви1ща из растворов их простых солей. Все эти металлы выделяются при отрицательных потенциалах (по водоро/ ной шкале), которые в обычных режимах электролиза имеют следующие значения —0,80 В (Ni), —0,80 В (Zn), —0,45 В ( d) и —0,15 В (РЬ). Их потенциалы в приведенной шкале, т. е. заряды, можно оценить, воспользовавшись данными о нулевых точках этих металлов (см. табл. 11.6)  [c.469]

    Потенциалы нулевых зарядов К(0) (относительно электрода сравнения расплавленный РЬ — эвтектика K l + Li l) расплавленных металлов в расплавленных солях (по Л. И. Антропову) [c.164]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Понятия перенапряжения и поляризации до последнего времени не имели четкого разграничения. Эти термины в литературе употреблялись как синонимы применительно к одним и тем же явлениям, протекающим на электродах. Хотя точно установленных определений для этих терминов нет и,>в настоящее время, мы считаем наиболее целесообразным придерживаться определений, приведенных в учебнике Л. И. Антропова ( Теоретическая электрохимия , Изд. 2-е. М., Высшая школа , 1969, с. 297), а также в примечании редактора к книге К. Феттера ( Электрохимическая кинетика . Пер. с нем. под. ред. проф. Я. М. Ко-лотыркина, М., Химия , 1967, с, 30) Отклонение фактического потенциала электрода от равновесного потенциала какой-нибудь из протекающих в нем реакций есть перенапряжение этой реакции. Отклонение того же потенциала от стационарного значения потенциала обесточенного электрода есть поляризация электрода . [c.338]

    Нулевая точка металла принята за нуль в приведенной шкале потенциалов Л. И. Антропова. Потенциал в приведенной щкале ф определяется по уравнению [c.105]

    А. Н. Фрумкиным и независимо Л. Гамметом и А. Лорхом было показано, что сопряженные электрохимические реакции могут протекать на однородной поверхности химически чистого металла. Наличие на поверхности химических и структурных неоднородностей хотя и играет существенную роль, однако не является обязательным условием протекания сопряженных электрохимических процессов. Это представление было развито далее в работах К. Вагнера и В. Трауда, Я- В. Дур-дина, А. И. Шултина, Я- М- Колотыркина, Л. И. Антропова и др. При анализе систем с сопряженными электрохимическими реакциями используется принцип независимости электродных процессов, согласно которому закономерности сопряженных реакций при их совместном протекании остаются такими же, как и при протекании каждой реакции в отдельности. [c.367]

    Приняв емкость двойного слоя ртутного капельного электрода при полярографическом анализе равной 20 мкФ-см-2, скорость вытекания ртути 2-10- г-с-, период капания 2 с, потенциал по приведенной щкале Антропова 0,5 В, рассчитать, при какой концентрации реагирующего вещества О электродный процесс в условиях опыта приведет к протеканию фарадеевского тока, равного емкостному току. Принять и = 2 о = 9-10- см2-с-.  [c.138]

    Очевидно, что для правильного истолкования кинетики электрокристаллизации необходимо наряду с диффузионными затруднениями, замедленным разрядом и кристаллизацией учитывать адсорбционную поляризацию сильно влияющую на характер электродных реакций при электроосаждении металлов. Приведенная на рис. 119 диаграмма распределения ряда металлов, составленная Л. И. Антроповым в результате сопоставления рабочих потенциалов, сопровождающих катодное выделение металлов, с величинами равновесных потенциалов и точек нулевого заряда, указывает на большое значение потенциалов нулевых зарядов. Точка нулевого заряда не только характеризуег металл, но разграничивает области, отвечающие положительно [c.351]

    Многочисленные работы, проведенные в последние десятилетия, указали на особое значение специфической адсорбции ионов, атомов, молекул на границе раздела фаз. Работы Я. М. Колотыркина, Л. И. Антропова и др. подтвердили правильность теории А. Н. Фрумкина о значении потенциалов нулевого заряда при выявлении механизма электродных процессов. Исследования О. А. Есина, М. А. Лошкарева, К- М. Горбуновой, А. Т. Вагра- [c.9]

    Предложенные до настоящего времени теории электролитического восстановления имели в своей основе илн теорию атомарного водорода или теорию переноса электрона . Решение вопроса о том, какая из этих теорий более правильна, и построение общей теории является очеиь труд1гым делом Некоторые исследователи даже считают, что в настоящее время оно не осуществимо Более правильно было бы объединить обе теории Одна нз новейших теорий подобного рода была выдвинута Антроповым в 1950 г [12] [c.371]


Библиография для Антропова: [c.315]    [c.462]    [c.5]   
Смотреть страницы где упоминается термин Антропова: [c.249]    [c.440]    [c.450]    [c.226]    [c.607]    [c.270]    [c.8]    [c.72]    [c.373]   
Прогресс полимерной химии (1965) -- [ c.245 , c.280 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.668 , c.671 ]

Прогресс полимерной химии (1965) -- [ c.245 , c.280 ]

Электрохимия органических соединений (1968) -- [ c.532 ]

Равновесная поликонденсация (1968) -- [ c.71 , c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Антропов

Антропов

Антропов, капитан

Антропов. Кинетика электрохимических реакций и нулевые точки металлов

Антропов. О научной проблематике кафедры технологии электрохимических производств

Антропова туков

Антропова шкала потенциалов

Потенциал нулевого заряда и привиденная ф-шкала потенциалов Антропова



© 2025 chem21.info Реклама на сайте