Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кювета спектрофотометрическая

    Большая часть спектрофотометрических измерений проводится с растворами. При выборе растворителя необходимо учитывать следующее растворитель не должен поглощать в той же области, что и исследуемое вещество растворитель не должен взаимодействовать с исследуемым веществом. Растворители должны быть химически устойчивыми и хорошо очищенными. Растворитель перед употреблением должен быть проверен на спектральную чистоту. Ароматические растворители не пригодны для УФ-области ниже 300 нм четыреххлористый углерод поглощает излучение, начиная с 250 нм. Наиболее прозрачными растворителями для УФ-области до 200 нм являются вода, насыщенные углеводороды, этиловый и метиловый спирты, этиловый эфир. Коротковолновые пределы (длина волны, ниже которой пропускание растворителя в кювете толщиной 10 мм меньше 20%, т. е. поглощение больше [c.17]


    Инфракрасный спектрофотометрический метод измерения влажности. Основан на зависимости между содержанием воды в эмульсии и ее спектральными свойствами [144]. Характерные спектрограммы коэффициентов пропускания для воды и нефти приведены на рис. 9.4 (кривые 3 а 4). Метод измерения состоит в следующем. Измеряемую пробу нефти заливают в прозрачную кювету и через нее пропускают световой луч, получаемый при помощи узкополосного оптического фильтра. Спектральные характеристики двух таких фильтров даны на рис. 9.4 (кривые I и 2). Интенсивность светового сигнала, прошедшего через кювету, измеряют фотоэлементом. Если обозначить через /о и 1 интенсивности светового потока до и после прохождения через нефть, а через и к2 — коэффициенты поглощения воды и нефти в измеряемом спектральном диапазоне с учетом толщины слоя нефти в кювете, то можно записать следующее равенство [c.169]

    Увеличение толщины слоя до предельного значения (/ = = 10 см) может позволить снизить С.,,,н на порядок. Однако иа практике работают с кюветами толщиной 1—2 см, молярные коэффициенты светопоглощения окрашенных соединений в большинстве случаев не превышают 5-10 кроме того, в ходе выполнения анализа добавляют реактивы, производят разбавление растворов, в результате чего минимальные определяемые концентрации следовых количеств элементов увеличиваются до значений примерно 5-10 моль/л при спектрофотометрических определениях и до (1—2,5)-10 моль/л при фотоколориметрических определениях. Для элемента с относительной атомной массой 100 минимальные концентрации составят соответственно 0,05 и 0,1—0,3 мкг/мл. Если принять, что оптические плотности исследуемых растворов указанных концентраций измеряют в кювете с /==2 см, объем которой равен примерно 10 мл, то общее содержание элемента в этом объеме составит соответственно 0,5 и 1—3 мкг. Отсюда следует, что при навеске анализируемой пробы в 1 г обычный спектрофотометрический анализ позволяет определять минимальную массовую долю следов элементов на уровне 5-10 %, а фотоколориметрический— на уровне (1—3) %  [c.185]

    Кювета р,п9 спектрофотометрического анализа, длиной 50 мм. [c.14]

    Рассмотренные ошибки спектрофотометрического метода в основном относятся к работе прибора. Естественно, что не меньшее значение могут иметь ошибки, связанные с работой самого исследователя (точность приготовления исходных растворов, способ заполнения кювет), и с условиями протекания конкретной химиче- ской реакции (разложение реагентов, межмолекулярные взаимодействия и т. п.). Все это должно учитываться при проведении фотометрических измерений. [c.22]


    Аппаратура. Для спектрофотометрического титрования используют приборы СФ-5, СФ-4, СФ-4А, СФД-2, устройство которых описано в гл. vn. В крышке кюветной камеры применяемого спектрофотометра просверливают два отверстия одно для кончика бюретки, другое для механической мешалки. При титровании используются кюветы объемом 25 мл. [c.437]

    Большое значение для нормальной работы спектрофотометрических детекторов имеет конструкция проточной кюветы. Она должна обеспечивать быстрое прохождение всей массы жидкости через кювету и отсутствие застойных зон. Используют кювету двух типов. В кювете -формы (рис. 11,16) подвижная фаза поступает с одного конца, омывает кварцевые окошки и выводится с другого. В кювете Н-формы (рис. 11,17) подвижная фаза, попадая через отверстие снизу в центр кюветы, разделяется на два потока и выводится сверху, Объем ячейки в обоих типах кювет должен быть минимальным, обычно не более 10 мкл. [c.92]

    Техника титрования.. Метод спектрофотометрического титрования основан на измерении оптической плотности исследуемого раствора, изменяемой в процессе титрования. Для уменьшения влияния разбавления на светопоглощение применяют относительно концентрированные растворы титранта или вводят поправку на разбавление. Для работы готовят приблизительно 2,5 — 1 Ю- н. растворы анализируемого вещества (навеску 20—100 мг растворяют в 20—40 мл неводного растворителя, отбирают аликвотную часть исходного раствора и разбавляют в кювете до концентрации 2-10 3—1 10 н. Титрование проводят без кюветы сравнения. Кювету с исследуемым раствором помещают н кюветную камеру спектрофотометра. Техника работы со спектрофотометром описана в гл. VII. [c.437]

    Второе условие экстремума Гта = оо не имеет реального смысла. Пример 2. Известно, что путем выбора толщины кювет при фотоколориметрическом или спектрофотометрическом определении можно изменять значения оптических плотностей А. На каком участке шкалы оптических плотностей растворов следует проводить измерение, чтобы погрешность была минимальной  [c.135]

    Если применяемые в процессе спектрофотометрического определения реагенты бесцветны и используются водные растворы, то в кювету сравнения наливают дистиллированную воду. Если же применяют окрашенные реактивы, то в кювету сравнения наливают те же реактивы в том же количестве, но без определяемого элемента. Такой раствор называется нулевым или раствором сравнения. [c.259]

    Количественное определение производят спектрофотометрически или поляриметрически. Последнее гарантирует содержание правовращающего биологически активного вещества (цис-изомера). Около 0,05 г препарата (точная навеска) растворяют в 50 мл бутилацетата, 1 мл этого раствора разбавляют бутилацетатом до 10 мл и определяют оптическую плотность раствора на спектрофотометре СФ-4 при длине волны 289 ммк в кювете с толщиной слоя 0,1 см. Содержание гризеофульвина (X) в процентах вычисляют по уравнению  [c.708]

    Неводные растворители, например циклогексан, сероуглерод и другие, должны быть оптически чистыми, т. е. не содержать никаких примесей, которые могут поглощать лучи тон области спектра, в которой проводят спектрофотометрическое определение. Растворители, применяемые для спектрофотометрических измерений в инфракрасной области спектра, не должны содержать воды, потому что вода разрушает кюветы из каменной соли или сильвина. [c.259]

    Необходимо определять 1 10 % Си в полупроводниковых материалах. Каким минимальным молярным коэффициентом поглощения (е) долж но обладать комплексное соединение меди, в виде которого ее определяют спектрофотометрически, если навеска образца 1 г, конечный объем измеряемого раствора 5 мл, длина кюветы (/) 5 сл и минимальное допустимое значение оптической плотности О) — 0,020  [c.497]

    Технические данные жидкостного хроматографа ХЖ-1305 следующие максимальное рабочее давление насоса (для прокачки подвижной фазы) — 20 кг/см объемные скорости подачи растворителя — 16—4000 мкл/ч размеры колонок (длина 30, 50, 100, 150 мм, внешний диаметр 0,5 1 мм) спектрофотометрический детектор (спектральный диапазон — 200—600 нм, объем проточной кюветы — 0,8 мкл). [c.51]

    Спектрофотометр позволяет регистрировать оптическую плотность как на собственном самописце, так и на дополнительном, выносном. В качестве такого выносного самописца в зависимости от вида работы можно исиользовать либо КСП-4 с системой датчиков, либо двухкоординатный самописец ПДС-021М. Раствор помещают в специальную спектрофотометрическую кювету (рис. 98), рассчитанную для размещения в ней электродов, механической мешалки и наконечника бюретки для подачн титранта. Кроме того, кювета позволяет изменять длину оптического пути от О до 25 мм, что дает возможность, не меняя концентрации раствора, записывать его полный спектр во всем спектральном диаиазоис в любой шкале плотностей. Кювета с кварцевыми окнами изготовлена целиком из фторопласта и снабжена рубашкой для термо- [c.275]


    Изучение факторов, влияющих на точность спектрофотометрических измерений [19] — [27], показывает, что причины ошибок в спектрофотометрии могут быть весьма разнообразны и многочисленны. Ошибки возникают, например, за счет действий оператора, условий проведения реакций, недостаточной чистоты кювет, непостоянства их установки в кюветные отделения, невоспроизводимости настройки шкалы прибора на О и 100% пропускания, непостоянства излучения источника освещения, нестабильности работы фотоэлектрической системы [24] — [27]. [c.30]

    Из уравнения кривой спектрофотометрического титрования (П1.18) также следует, что чувствительность метода можно повысить увеличением толщины слоя кюветы (/) и выбором соответствующей длины волны, при которой /гмк имеет наибольшее значение, так как А пропорциональна / MR = ми/. [c.61]

    Приспособление для спектрофотометрического титрования к нерегистрирующим спектрофотометрам рассматриваемого типа может быть выполнено довольно просто. Металлическую крышку кюветного отделения заменяют эбонитовой, проделывают в ней два отверстия одно для микробюретки, второе для механической мешалки. Кювета из оптического стекла должна иметь объем около 25 мл (для титрования в видимой области спектра можно использовать, например, кювету от фотоэлектрокалориметра ФЭК-М с / = 4 см). Стенки кюветы покрывают черным лаком, оставляя отверстие диаметром в 1 см на пути светового потока. Мешалка вводится через отверстия в крышке кюветного отделения так, чтобы ее конец находился против затемненного участка кюветы. Раствор реагента прибавляют из микробюретки, чтобы избежать значительного разбавления титруемого раствора. [c.265]

    В спектрофотометрическую кювету с длиной оптического пути 1 см вносят [c.84]

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Кинетические измерения проводят в стандартных кварцевых кюветах толщиной 1 см. За кинетикой реакции следят по выделению уксусной кислоты в ходе облучения. Концентрацию образовавшейся ускусной кислоты определяют спектрофотометрически с использованием индикатора бромфенолового синего. Для этого индикатора характерно наличие в спектре поглощения двух максимумов цри 430 и 593 нм. Отнощение оптических плотностей при 430 и 593 нм линейно зависит от концентрации кислоты. [c.150]

    Небольшие изменения температуры в лаборатории не отражаются на спектрах поглощения. Тщательное термо-статирование кювет необходимо при спектрофотометрическом изучении кинетики и равновесия некоторых химических процессов, при исследовании конформационных переходов в макромолекулах и некоторых других физикохимических процессов. При повышенных температурах на внутренних поверхностях кювет появляются пузырьки воздуха, которые искажают измеряемое оптическое поглощение. Необходимо также учитывать испарение растворителя, которое приводит к повышению концентрации раствора. Испарение можно уменьшить, используя кюветы с пришлифованными тефлоновыми пробками. [c.18]

    Спектротитрограф удобно применять для изучения кинетики химических реакций. При изучении кинетики при фиксированной величине pH необходимое зпачение pH устанавливается с помощью датчиков конечной точки титрования блока БАТ-12ЛМ. При отклонении pH от заданного значения ио сигналу с БАТа включается шприцевая бюретка и в систему добавляется необходимое количество титраита для восстановления заданного зиачения pH. С помощью механической регистрационной приставки иа диаграммной лепте самописца КСП вычерчивается график зависимости расхода титранта от времени, т. е. кинетическая кривая изучаемой реакции. Кроме того, если по ходу такой реакции расходуется или образуется поглощающее свет вещество, реакцию можно ироводить в спектрофотометрической кювете и параллельно с кинетической кривой расхода титранта получать зависимость изменения оптической плотности от времени. Сравнение двух кинетических кривых, получаемых одновременно и независимым образом для одной и той же реакции, дает более полную информацию о ее механизме. [c.283]

    Перенести пипеткой 20 мл (или меньше) поглотительного раствора в 25-мл мерную колбу. Добавить 0.6 мл хлорной кислоты H IO4, 3.00 мл комбинированного реагента и довести до метки водой. Тщательно перемешать, перенести в 5 см спектрофотометрическую кювету и замерить оптическую плотность, как описано в пункте 20. Определить количество хлоридов в мкг в аликвотной пробе (25 мл) по калибровочному графику. [c.36]

    В сравнительно концентрированных равновесных растворах концентрацию меди определяли спектрофотометрическим методом при > =610 ммк в кювете длиной 20 мм в более слабых равновесных растворах медь определяли с диэтилди-тяокарбаминатом натрия. Концентрацию кремниевой кислоты в растворах определяли фотометрированием с молиб-датом аммония. [c.223]

    Кинетика ферментативных реакций в предстационарном режиме их протекания изучается в основном методами остановленной струи . Принципиальная особенность этих методов состоит в быстром смешивании растворов реагирующих веществ в смесительной камере специальной конструкции [3, 4], после чего смесь поступает в измерительную кювету. Чаще всего в установках типа остановленной струи используется спектрофотометрический метод измерения с осциллографичеокой регистрацией сигнала от фотоумножителя. Мертвое время лучших современных установок подобного типа составляет 0,1 —0,3 мсек. [c.188]

    Разработан также ряд быстрорегистрирующих спектрофотометрических установок. Данные приборы используют два основных принципа комбинацию спектрофотометра с кюветой остановленной струи и комбинацию спектрофотометра с устройством для температурного скачка. На этих приборах в основном изучается кинетика быстрых ферментативных реакций, быстрых конформацион-ных переходов в биологических молекулах, температурных зависимостей многих процессов жизнедеятельности клетки и т. п. [c.16]

    Количественное определение производят спектрофотометрически. Около 0,02 г препарата (точная навеска) растворяют в мерной колбе емкостью 500 мл, определяют оптическую плотность полученного раствора при длине волны 361 ммк в кювете толщиной слоя 1 см с применением воды в качестве контрольного раствора. Содержание цианокобаламина в процентах (X) вычисляют по формуле  [c.684]

    Блок-схема установки для автоматического спектрофотометрического и потенциометрического титрования — спектротитрографа приведена на рис. 97. Исследуемый процесс осуществляется в спектрофотометрической кювете специальной конструкции, представляющей одновременно и потенциометрическую ячейку. Происходящие в ней изменения оптической плотности или электродного потенциала измеряются датчиками соответствующих блоков и автоматически записываются блоком регистрации. Автоматический тит-ратор через блок управления связан с измерительной и регистрирующей системами установки. [c.273]

    Спектрофотометр позволяет регистрировать оптическую плотность как на собственном самописце, так и на дополнительном, выносном. В качестве такого выносного самописца в зависимости от вида работы можно использовать либо КСП-4 с системой датчиков,- либо двухкоординатный самописец ПДС-021М. Раствор помещают в специальную спектрофотометрическую кювету (рис. 98), рассчитанную для размещения в ней электродов, механической мещалки и наконечника бюретки для подачи титранта. Кроме того, кювета позволяет изменять длину оптического пути от [c.274]

    Приступая к работе, необходимо из набора, который прилагается к каждому ФЭКу, выбрать кюветы оптимального размера. Так как согласно уравнению Л=е С1, оптическая плотность зависит от толщины поглощающего слоя, выбор кювет должен быть сделан с таким расче- том, чтобы значения оптических плотностей для проб стандартного ряда укладывались в интервале 0,1—1,0. Для получения точных результатов лучше работать в более узком интервале от 0,1 до 0,6 единиц оптической плотности. Выбор кювет проводят следующим образом определяют оптическую плотность одной пробы стандартного ряда со средним содержанием анализируемого вещества, пользуясь кюветами с расстоянием между рабочими гранями, равным 1 см. Если значение оптической плотности составляет приблизительно 0,3—0,35, то данную кювету используют для работы, если больше или меньше этого интервала, берут кювету меньшего или большего размера. Остальные требования к кюветам такие же, как при спектрофотометрическом анализе. [c.9]

    В сиектротитрографе в качестве блока регистрации спектральных характеристик целесообразно использовать поляриметр и ди-хрограф при исследовании оптически-активных соединений, а также двухволновые спектрофотометры. Применяя специальные спектрофотометрические кюветы, можно снимать в автоматическом режи- [c.276]

    В спектрофотометрическую кювету с длиной оптического пути 1 см вносят 0,1 мл суспензии иммобилизованного на сефарозе белка, добавляют 2 мл раствора кумасси, перемешивают при комнатной температуре 2—3 мин и быстро измеряют оптическую плотность смеси при 595 нм, используя в качестве контроля кювету, содержащую 0,1 мл суспензии неактивированной сефарозы и 2 мл красителя. Для построения калибровочного графика к 0,1 мл суспензии неактивированной се-<фарозЫ добавляют от 2 до 20 мкг исходного препарата белка и 2 мл раствора красителя, а затем измеряют оптическую плотность. С помощью данного метода можно определить содержание белка в препаратах иммобилизованных ферментов, содержащих более 10 мкг белка в [c.85]


Смотреть страницы где упоминается термин Кювета спектрофотометрическая: [c.46]    [c.46]    [c.274]    [c.287]    [c.268]    [c.284]    [c.286]    [c.274]    [c.7]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.641 ]




ПОИСК





Смотрите так же термины и статьи:

Спектрофотометрические



© 2025 chem21.info Реклама на сайте