Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисляющие вещества, влияние

    В процессе работы нефтяные масла под действием кислорода воздуха и повышенных температур окисляются, претерпевая при этом в течение времени более или менее заметные изменения. Окисление масел приводит к появлению в них кислот, способных при известных условиях вызывать коррозию деталей двигателей и механизмов. Помимо кислот в результате окисления образуются растворимые и не растворимые в маслах смолистые вещества и продукты их конденсации и полимеризации, которые, отлагаясь в маслопроводах, нарушают циркуляцию масел и загрязняют двигатели и механизмы либо оказывают отрицательное влияние на другие свойства масел (например, понижают диэлектрическую прочность трансформаторного масла). Многие масла (например, масла для двигателей внутреннего сгорания, для паровых машин) в зоне высоких температур подвергаются дополнительно термическому разложению, что в конечном счете приводит к нагарообразованию. [c.212]


    Чертковым с сотрудниками [284, с. 91] исследовано влияние на осадкообразование в топливах для турбовоздушных реактивных двигателей соединений различных классов, которые были разделены на две большие группы антиокислители и поверхностно-активные вещества, обладающие антиокислительными и диспергирующими свойствами. К первой группе относятся ароматические М-замещенные и незамещенные амины и оксиамины, Ы-замещенные производные карбамида и тиокарбамида ко второй — алифатические амины соли, образованные полиаминами и жирными кислотами, М-ациламины, эфиры и неполные соли три-этиламина, неполные эфиры диэтиленгликоля и жирных кислот, а также гетероциклические соединения. Лучшими присадками для стандартных прямогонных топлив и топлив, содержащих крекинг-. компоненты и применяемых при повышенных температурах, оказались алифатические амины Сю—С40, несколько меньшей эффективностью обладают эфиры триэтаноламина и неполных эфиров многоатомных спиртов с жирными кислотами. Осадкообразование топлив с повышенным содержанием меркаптанов снижается наиболее значительно при добавлении гетероциклических соединений. В то же время обычные низкотемпературные антиокислители (п-гидроксидифениламин, фенил-а-нафтиламин, Ы,Ы -ди-вгар-бу-тил- -фенилендиамин, 2,4-диметил-6-трег-бутилфенол, 4-метил-2,6-ди-трет-бутилфенол и фенолы каменноугольного происхождения), применяемые при хранении топлив, в условиях повышенных температур не уменьшают осадкообразования, а наоборот, сами окисляются и иногда выпадают в осадок. [c.254]

    Несмотря на то, что положительные катализаторы для производства ацетилена из метана неизвестны, многие вещества обладают отрицательным влиянием на выходы ацетилена. Эти вещества, по-видимому, промо-тируют разложение метана на углерод и водород. К таким веществам относятся обычно металлы железо, никель, кобальт, медь, платина и палладий [80, 95]. Отсюда следует, что аппаратура для термического крекинга метана не должна включать такие металлы или их окислы. [c.70]

    Азот в сельском хозяйстве. Азот — элемент питания растений. Растения используют его из почвы в форме различных азотистых веществ, растворенных в почвенной жидкости (почвенный раствор). Однако основная масса азотистых веществ находится Б почве в форме нерастворимых в воде и непосредственно недоступных растениям органических веществ (главным образом мертвых остатков растений). Под влиянием бактерий органическое вещество почвы разлагается с образованием в конечном счете Oj, Н2О и минеральных солей ( минерализация органических веществ). При этом азотистые вещества почвы первоначально выделяются в форме аммиака (процесс а м м о н и з а ц и и). Аммиак с кислотами почвы образует соли аммония, в форме каковых азот уже может использоваться растениями. Однако значительная часть аммиака почвы окисляется бактериями сначала до азотистой кислоты  [c.474]


    Из изложенного выше следует, что точный механизм поведения инертных электродов при окислительно-восстановительном титровании все еще во многих случаях неясен, особенно если имеют место необратимые полуреакции. Необходимо дальнейшее изучение кинетики и механизма реакций образования окисла и влияния окисной пленки и адсорбированных на ней веществ на скорость реакций, связанных с переносом электронов. [c.370]

    Некоторые альдегиды, особенно ароматические, окисляются очень легко например, бензальдегид окисляется под влиянием света даже кислородом воздуха, образуя при хранении кристаллы бензойной кислоты. Для предохранения от этого к таким легко окисляющимся альдегидам добавляют специальные вещества — так называемые антиоксиданты. Для стабилизации бензальдегида достаточно добавления в качестве антиоксиданта 0,01% гидрохинона. [c.240]

    Однако опыт показывает, что это не всегда так. В качестве примера на рис. 104 показаны кривые, характеризующие влияние двух разных антиокислителей на окисление одного и того же вещества. Из рисунка видно, чго антиокислитель II тормозит окисление как при добавлении его до начала окисления, так и при добавлении в уже начавшее окисляться вещество. Антиокислитель I тормозит окислительный процесс только при введении его в вещество до начала окисления и не влияет на процесс, если его добавлять в систему, уже начавшую окисляться. [c.299]

    Окисление и восстановление ионов малорастворимого электролита. Если в насыщенном растворе малорастворимого электролита катион или анион окисляют или восстанавливают, равновесие нарушается и в раствор переходят дополнительные количества вещества твердой фазы. Влияние окислителя (восстановителя) обычно удобно выяснить с помощью константы суммарного равновесия. [c.120]

    Мыльные смазки окисляются значительно быстрее жировой солидол, например, слабощелочной вначале, за 7 лет в таре приобретает кислотное число 0,8—1,6 мг КОН на 1 г, а в ступицах колес — 1,9—7,9. Кислотное число жирового консталина за это время может достигнуть 10—45 мг КОН на 1 г. Некоторые смазки окисляются особенно быстро. При значительном окислении в смазке накапливаются продукты, вызывающие коррозию металлов и изменяющие структуру смазки окисление приводит к разрушению структурного каркаса мыльных смазок, изменению прочностных и вязкостных свойств, изменению сопротивления диффузии паров коррозионно-агрессивных веществ (воды) и т. д. Химически стабильными считают такие смазки, в которых в течение всего времени хранения (обычно исчисляемого годами) или работы в узлах трения химические изменения заметного влияния на рабочие свойства не оказывают. Наиболее жесткие требования по химической стабильности предъявляются к смазкам, работающим в ответственных механизмах, где смена смазки (или пополнение ее) невозможна или сильно затруднена, а условия эксплуатации достаточно жестки. [c.665]

    Отравление обоих видов рассматривается в работе [45], где изучалось влияние различных концентраций никеля, ванадия, железа, меди, свинца и натрия на результаты крекинга и качество катализатора. Металлы наносили на катализатор пропиткой его водными растворами солей. Ванадий вводили в виде метаванадата аммония, а натрий — в виде ацетата. Остальные металлы вводили в виде нитратов. Чтобы избежать попадания в катализатор посторонних примесей растворы солей металлов приготовляли в двукратно дистиллированной воде, а все сосуды перед употреблением тщательно очищали, промывали и споласкивали также двукратно дистиллированной водой. Пропитанные образцы высушивали при 90 °С, а затем прокаливали в воздухе при 600 °С в течение 2 ч для разложения солей металлов до окислов и полного удаления летучих веществ. Выходы продуктов крекинга в стандартных условиях на полученных образцах катализатора приведены в табл. 48 [45]. Там же приводятся данные о кислотности, удельной поверхности и поровой характеристике этих образцов. [c.171]

    Некоторые присадки могут пассивировать поверхность металла, снижая его каталитическое влияние на окисление топлива, образовывать на нем защитную пленку вследствие химического взаимодействия, а также адсорбируясь на поверхности металла в виде мономолеку-лярного слоя, создавать барьер, препятствующий проникновению к металлу коррозионно-агрессивных веществ (главным образом, полярные соединения) [15, 16]. Полагают, что для развития коррозии в углеводородной среде необходимо наличие как продуктов кислотного характера, так и окисляющих агентов [15]. Процесс коррозии металлов в этих условиях считают состоящим из двух стадий образования окислов металла под воздействием окисляющего агента реакции образовавшегося окисла с кислотой (растворения в ней). Соответственно этому представлению противокоррозионные присадки могут воздействовать на процесс коррозии, восстанавливая окисляющий агент, замедляя образование кислотных продуктов (вследствие торможения самоокисления топлива) и в общем случае предохраняя поверхность металла образованием защитной пленки [15, 16]. [c.182]


    Большие поры (например, 5000 X ) можно получить в катализаторе, добавляя в него органические вещества, которые затем выжигаются. Например, мелко раздробленный носитель смешивают с 5% крахмала или сильно размельченной а-целлюлозы в присутствии активного катализатора или без него. Смесь таблетируют или формуют, сушат и окисляют, в итоге получают бидисперсный катализатор, имеющий два максимума на кривой распределения пор по радиусам большие поры -влияние органической добавки - и обычные более узкие поры, характерные для носителя. [c.354]

    Чтобы ограничить протекание побочных реакций (12) — (14), ведущих к потерям метана, необходимо работать при малых степенях превращения за проход и при очень малых интервалах времени пребывания газовой смеси в реакторе. Катализаторы не оказывают сколько-нибудь значительного влияния на эту реакцию. В качестве катализаторов испытаны как твердые вещества (фосфаты металлов), так и газообразные (окислы азота, хлористый водород), причем все они оказались достаточно эффективными. [c.69]

    Вовлечение посторонних веществ в реакции окисления и восстановления представляет большой интерес для изучения химизма процессов изменения валентности, в частности — дает возможность обнаружить и изучить свойства промежуточных продуктов. Однако при количественном анализе сопряженные реакции обычно оказывают неблагоприятное влияние, и необходимо принимать меры к их устранению. Так, во многих случаях растворенный в воде кислород практически не окисляет находящихся в растворе восстановителей. Из подкисленного раствора йодистого калия кислород лишь очень медленно выделяет йод. Если же в растворе, содержащем растворенный кислород, идет реакция, например, между пятивалентным ванадием и йодистым калием  [c.359]

    Очень большое влияние на скорость окислительно-восстановительных реакций оказывает введение катализаторов — веществ, способных в десятки и сотни раз увеличивать скорость реакций. Примеров каталитического ускорения химико-аналитиче-ских реакций известно очень много. Например, пероксид водорода окисляет иодид в растворе с очень небольшой скоростью  [c.114]

    Повышение вязкости растворов высокомолекулярных веществ при введении в них различных добавок объясняется либо увеличением взаимодействия макромолекул друг с другом в результате освобождения под влиянием примесей активных мест на молекулярных цепях, либо образованием химических связей между молекулами полимера и примесей (действие окислов металлов, альдегидов). Понижение вязкости.также можно объяснить двумя причинами либо деструкцией макромолекул под влиянием примесей (действие аммиака, альдегидов, кислот и т. д.), либо уменьшением взаимодействия цепей друг с другом в результате взаимодействия примесей с активными группами макромолекулы. [c.465]

    Импульсный гальваностатический метод используется также для изучения строения двойного электрического слоя и адсорбции веществ, которые могут окисляться или восстанавливаться на поверхности электрода. При концентрациях органического вещества <10" моль/л и 1>100 А/м величина п, рассчитанная из переходного времени на хронопотенциограмме, равна пРГ, где Г — адсорбция органического вещества. Однако в ходе восстановления (или окисления) адсорбированных частиц их убыль пополняется за счет диффузии вещества из объема раствора. Влияние диффузии на хронопотенциограмму определяется видом зависимости между приэлектродной концентрацией органического вещества и величиной адсорбции его на электроде, т. е. изотермой адсорбции. Поэтому поправку на диффузию по уравнению (42.6) проводить нельзя. Кроме того, необходимо учитывать последовательность, в которой вступают в электрохимическую реакцию заранее адсорбированные и диффундирующие из раствора частицы. Адсорбцию деполяризатора, накопленного предварительно на поверхности электрода, рассчитывают по соотношению [c.215]

    В. А. Киреев в развитии предложенного им метода расчета энтропии показал, что хороших результатов при вычислении можно добиться, рассматривая реакцию образования соединения не из простых веществ, а из более сложных составных частей, например карбонатов металлов из окислов металла и двуокиси углерода, водных солей и Н20(т) и т. д. При этом исключаются не только влияние различия в валентном состоянии, но в значительной степени и различия в структуре, так как сравниваются однотипные соединения. Так, для однотипных солей кислородных кислот [c.440]

    В общем случае скорость реакции в гетерогенных процессах пропорциональна поверхности соприкосновения реагирующих веществ. По этой причине порошки значительно скорее окисляются кислородом, чем массивные куски веществ, мелкораздробленный мрамор быстрее реагирует с соляной кислотой, чем его крупные куски, и т. д. Помимо этого, значительное влияние оказывают скорость удаления продуктов реакции с поверхности твердого вещества, диффузия веществ, разогревание или охлаждение тех участков твердого вещества, где происходит реакция. [c.80]

    Влияние активаторов и ингибиторов. Нередко действие катализаторов связано с влиянием на них некоторых веществ, обладающих способностью угнетать их активность или, наоборот, стимулировать ее. Первая группа веществ называется ингибиторами, вторая — активаторами. Активаторами являются, главным образом, окислы металлов и некоторые соли, а могут быть различные элементы (С1, Вг, I, В и др.) гидриды ИзЗ, НР, РНз и др. окислы серы, селена,. фосфора и т. п. [c.102]

    Если в насыщенном растворе малорастворимого электролита катион или анион окисляют или восстанавливают, равновесие нарушается и в раствор переходят дополнительные количества вещества твердой фазы. Влияние окислителя (восстановителя) обычно удобно выяснить с помощью константы суммарного равновесия. [c.119]

    Простым примером является пористая двухкомпонентная структура, представляющая собой агрегат из спекающихся и неспекаю-щихся кристаллов. По-видимому, существует два возможных пути, которые могут привести к увеличению кристаллов. Первый заключается в потере стабильности неспекающегося компонента, который под влиянием изменяющейся химической среды начинает спекаться. Рис. 6 показывает, как размер кристалла трудноспекающегося вещества, которое более не является стабилизатором, увеличивается со скоростью, пропорциональной скорости спекания легкоспекаю-щегося вещества. Влияние воды и пара на тугоплавкие окислы, подобные окиси алюминия, — пример такого ослабления стабилизатора. Вторая возможность заключается в том, что кристаллы спекающегося компонента могут увеличиваться благодаря наличию механизма байпасного переноса. Атомы спекающегося компонента могут переноситься через промежутки между кристаллами этого компонента, тем самым позволяя термодинамическим потенциалам кристаллов различного размера становиться эффективными движущими силами, промотирующими рост кристаллов. В этих условиях кристаллы стабилизирующего носителя не должны увеличиваться. Но взаимосвязь, представленная на рис. 6, нарушаете , и закономерности, управляющие спеканием спекающегося вещества, фактически возвращаются (хотя и не совсем точно) к закономерностям однокомпонентной системы, которая была показана на рис. 4. Хороший пример такого механизма структурного коллапса — влияние присутствия в медном катализаторе небольшого количества хлора (или [c.43]

    На С. порошков окислов существенное влияние оказывают структурные закансии, обусловленные нестехио-метричностью состава. Наихудшая С. порошков — как простых веществ (углерода, кремния, германия), так и соединений (карбида кремния, нитрида бора, нитрида кремния и др.), у которых преобладает ковалентная связь. Порошки этих веществ, как правило, не спекаются без приложения внешнего давления (горячего прессования). С. существенно улучшают введением активирующих добавок. Так, спекание вольфрамовых и молибденовых порошков активируют добавкалш металлов VIII группы периодической системы элементов, спекание норошка глинозема — добавками окиси магния. [c.421]

    Азотная кислота обладает сильно выраженными окислительными свойствами. Она разрушает животные и растительные ткани, окисляет почти все металлы и неметаллы. Образование тех или иных продуктов взаимодействия зависит от концентрации НЫОз, активности простого вещества и температуры (стр. 264). На рис. 183 показано влияние концентрации НЫОз на характер образующихся продуктов ее восстановления при взаимодействии с железом. Достаточно разбавленная кислота в основном восстанавливается до ЫН4ЫО3 с повышением ее концентрации становится более характерным образование ЫО концентрированная НЫОз восстанавливается до ЫОа- [c.400]

    В малых концентрациях не тормозит БПК разведенных сточных вод, а сам окисляется. По влиянию на санитарный режим водоемов безвредна концентрация 4 мг/л [13], концентрация 200 мг/л вредно влияет на сооружения биологической очистки сточных вод [21]. Тормозит биологическую очистку сточных вод при 700 мг/л в биофильтрах [22]. Разложение органических веществ на очистных сооружениях снижается при 790 мг/л, а брожение осадка в отстойниках и метаитенках задерживается при 5000 мг/л [23]. [c.114]

    Дополиительным увлажнением реакционной смеси можно существенно повысить степень конверсии исходного вещества, увеличить общую скорость процесса, поднять выход отдельных продуктов неполного окисления (особенно карбоновых кислот), замедлить или ускорить окислительное деалкилирование, затормозить процессы глубокого окисления и т. д. [90—92]. Поскольку вода принимает участие в продолжении окислительного процесса во всем реакционном объеме, а также в еще большей степени модифицирует поверхность катализатора, изменяя его селективность, при окислении в присутствии воды необходимо применять катализаторы, обладающие специфическим сродством к ней. К таким катализаторам относятся, например, окисные олово-ва-надиевые [91] и ванадий-титановые [92] контакты. Промотирующие свойства окислов олова и титана по отношению к окисному ванадиевому катализатору обусловлены, надо полагать, их способностью активно адсорбировать воду при повышенной температуре, содействовать ее диссоциации (иногда с выделением продуктов распада, в частности молекулярного водорода, в газовую фазу), окисляться под влиянием воды с образованием лабильных неорганических перекисей и гидроперекисей и т. д. Учитывая специфику влияния добавок водяных паров на контактное окисление, некоторые синтезы НО-содержащих органических соединений из углеводородов под действием смеси НгО - - Ог можно выделить в отдельную группу реакций окислительного гидр-оксилирования [88, 89]. [c.40]

    Для нормального протекания процесса самоочищения прежде всего необходимо наличие в водоеме после спуска в него сточных вод запаса растворенного кислорода. Химическое или бактериальное окпслсние органических веществ, содержащихся в сточных водах, приводит к снижению концентрации растворенного в воде кислорода (в 1 л воды содержится всего 8—9 мл растворенного кислорода, в 1 л воздуха — 210 мл кислорода). Влияние дезоксигенизирующих (снижающих содержание кислорода) агентов выражается в замене нормальной флоры и фауны водоема примитивной, приспособленной к существованию в анаэробных условиях. Органические вещества, взаимодействуя с растворенным кислородом, окисляются до углекислого газа и воды, потребляя различное количество кислорода. Поэтому введен обобщенный показатель, позволяющий оценить суммарное количество загрязнений в воде по поглощению кислорода. [c.76]

    Нефтеперерабатывающие предприятия сбрасывают со стоками органические вещества. Эти вещества нод влиянием ряда факюров, главным образом от воздействия взвешенных в толще аоды микроорганизмов, окисляются, расходуя для этой цели кислород, содержащийся в воде водоема и поступающий туда из атмосферы. Процесс окисления схематически можно представить так [c.209]

    Известно, что каталитическим реакциям гвдрогенолиза сероорга-нических веществ способствуют элементы У1-А и УШ групп периодической системы. Однако в литературе очень мало данных об их влиянии на процессы хемосорбции сероорганики окислами металлов и, в част-нос и, 2п0, а также о совместной работе сульфидов цинка и элементов У1-А и УШ групп в промежуточной и каталитической стадиях. Настоящая работа посвящена выяснению ряда этих вопросов. [c.5]

    За носледние годы существенное влияние на направление технологического и аппаратурного оформления процессов нефтепереработки начинают оказывать такие факторы, как ассортимент химического сырья, вырабатываемого из нефти, и меры защиты от загрязнений окружающей среды. Наряду с заменой водяного охлаждения воздушным и многократным использованием оборотной воды путем тщательной очистки загрязненных заводских вод, большое внимание уделяется очистке выбросных заводских газов, загрязняющих атмосферу [16]. О масштабах загрязнения атмосферы можно судить по следующим данным. В атмосферу нашей планеты выбрасывается в течение года 20 млн. т смесей органических веществ [17], 21 млн. т окислов азота и более 100 млн. т окислов серы, причем 38% этих загрязнений приходится на долю США [18]. [c.14]

    Многие исследователи отмечают повышение содержания серы в углеродистых веществах, полученных при коксовании углей и нефтяных остатков совместно с неорганическими добавками, особенно с соединениями кальция, железа, цинка и марганца. Установлено [153], что и])и предварительном удалении железа и ка,пь-ция из угля содержание серы в получаемом из него коксе снижается. При смачивании углей хлористыми солями железа и кальция содержание серы в коксе возрастает. При добавлении в процессе коксования угля окиси кальция в кокс переходит (в виде сульфида кальция) до 19% общей серы, содержащейся в угле. Кроме окислов железа и кальция серу активно связывает содй и другие добавки. Нами экспериментально установлено, что аналогичное влиянне на содержание серы в коксе оказывают некоторые зольные компоненты, находящиеся в сырье коксования. Некоторые из исследованных добавок ири температуре коксования не реакционноспособны (MgO, SIO2, AI2O3, СагОз, AI I3), активность их повышается ири более высоких температурах. [c.203]

    Загрязнение топлив происходит при их производстве, транспортиро вании, хранении, заправке и непосредственно в топливных баках наземной, воздушной и морской техники. Зафязнителями являются почвенная пыль, продукты коррозии топливного об< удования, продукты износа перекачивающих средств, мыла нафтеновых кислот. На поверхности частиц зафязни-телей адсорбируются смолистые вещества (продукты окисления, гетероатомные соединения), поэтому в составе мехпримесей содержится до 50% и более органических соединений. В состав неорганической части зафязнений входят почвенная пыль (окислы креыния, алюминия, соли кальция, магния, натрия), продукты износа ( железо, медь, олово и др.). Зафязнения оказывают отрицательное влияние на работоспособность топливной аппаратуры реактивных и дизельных двигателей. Частицы зафязнений размером более 4 мкм вызывают абразивный износ поверхностей трения, попадая в зазоры 1,5 [c.73]

    Круговорот азота в природе. При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например с карбонатом кальция СаСОз, образует нитраты  [c.441]

    Дегидрирование парафинов. Различные радикалобразующие вещества (кислород, иод, окислы азота, перекиси, сероводород и т. п.) могут быть катализаторами или, наоборот, ингибиторами термического распада углеводородов [33]. В рамках теории цепных радикальных реакций такое двойственное влияние объясняется либо заменой стадии инициирования или стадии продолжения цепи бо- [c.176]

    Эффективность тока. Для обеспечения 100%-ной эффективности тока для нужной реакции необходимо, чтобы испытуемый раствор не содержал других электроактивных веществ, способных окисляться или восстанавливаться при выбранных значениях потенциала рабочего электрода. Поэтому перед гем как выбрать нужный потенциал рабочего электрода, следует снять в отдельности кривые поляризации всех веществ, присутствующих в испытуемом растворе, если, конечно, их электрохимическое поведение в условиях проведения анализа определяемого вещества заранее неизвестно. При наличии мешающих компонентов следует либо предварительно их удалить, либо, если это возможно, изменить таким образом условия электролиза, чтобы исключить их мешающее влияние. Одним из эффективных средств является связывание мешающих компонентов в соответствующие комплексы. Это приводит к уменьшению равновесных концентраций примесей настолько, что их потенциалы электропревращения резко сдвигаются в нужную сторону. Нередко можно достигнуть успешных результатов изменением при- Рис. 62. Прямая потенциостатиче-роды рабочего электрод., кислогности гГ [c.193]

    Именно изучение кривых зависимости 1 = /( ) помогает установить наличие соединений, мешающих правильному ходу кулонометрического титрования. Для устранения их влияния на ход основной реакции следует поступить так, как это указано выше (см. стр. 193). Сказанное, однако, вовсе не означает, что в растворе всегда должны отсутствовать другие соединения, способные восстанавливаться или окисляться раньше, чем вспомогательный реагент (при соответствующих электродных процессах генерации). Если продукты подобных электроактивных веществ способны химически взаимодействовать с определяемым веществом, то присутствие их не мешает кулонометрическому титрованию определяемого вещества. Если же подобные примеси, кроме того, способны в свою очередь химически взаимодействовать с промежуточным реагентом, электрогенерированным из вспомогательного реагента, то это позволяет ди( )ференцированно определить примеси и искомое вещество. Возможность последовательного кулонометрического титрования нескольких соединений основывается, следовательно, на тех же принципах, что и теории других электрохимических методов анализа, в первую очередь — потенциометрического титрования. Для решения таких задач весьма важно знать формальные потенциалы ред-окс систем, участвующих в реакциях. [c.202]

    Влияние третьих элементов, В практике часто приходится встречаться с изменением концентрации третьих элементов и даже их качественного состава от образца к образцу, Даже разные образцы металла одной марки и то обычно отличаются количественным содержанием третьих элементов, Влияние третьих элементов проявляется на разных стадиях введения и возбуждения вещества. Так третьи элементы с низкими потенциалами ионизации сильно влияют на температуру разряда. Поэтому в зависимости от их концентрации возбуждение определяемого элемента будет происходить при разных температурах, что приводит к изменению нитенсивности аналитических линий. Третьи элементы могут образовывать с определяемым различные химические соединения как в расплаве, так и в самом источнике света. В зависимости от свойств получающихся соединений поступление и возбуждение анализируемого элемента оказывается облегченным или, наоборот, затрудненным. Например, в пробах, содержащих фтор, он образует с некоторыми металламитруднодиссоциированные сседи-нения, что приводит к снижению точности анализа, так как концентрация фтора меняется произвольным образом от образца к образцу. Фтор также уменьшает чувствительность анализа. Третьи элементы могут препятствовать или, наоборот, облегчать химические реакции определяемого элемента с воздухом и материалами электрода. Например, при анализе металлов состав расплава по сравнению с составом образца оказывается обогащенным элементами, которые окисляются наиболее энергично, В присутствии третьих элементов, которые окисляются сильнее, чем анализируемый, его окисление и поступление в разряд будет замедленно, В этом одна из главных причин влияния третьих элементов на относительную интенсивность спектральных линий и точность анализа металлов. [c.239]

    Указания к работе Важное место в химической экологии занимают вопросы, связанные с разработкой методов очистки сточных вод. Существуют биохимические и физико-химические методы очистки сточных вод. Особый интерес из физико-химических методов очистки сточных БОД представляет гетерогенно-каталитический вариант, основанный на использовании в качестве окислителя пероксида водорода. 5 ггановлено, что пероксид водорода в концентрациях 10 -10 мопь/л образуется в водоемах при фотохимических процессах с участием микроорганизмов. Под воздействием солнечных лучей, а также под влиянием микроколичеств ионов металлов, присутствующих в воде, возможен распад пероксида водорода. При атом находящиеся в воде вещества - восстановители - окисляются и происходит самоочищение водоемов. [c.102]

    Такая схема (без формул) была разработана еще в конце XVIII — начале XIX века. Она внесла ясность во взаимоотношения между различными классами веществ и тем самым сыграла большую положи-тельн)то роль в развитии химических представлений. Однако она же отчасти и задержала это развитие вследствие того, что ее считали обязательной для всех случаев. Наиболее ярко такое задерживающее влияние сказалось во взглядах на химическую природу хлора, который долго не признавали самостоятельным элементом и считали окислом некоторого гипотетического элемента мурия . Происходило это потому, что иначе казалось невозможным объяснить кислотные свойства соляной кислоты, так как согласно схеме кислота должна была образовываться соединением с водой окисла металлоида. [c.57]

    Аналогичные по химизму, но протекающие под влиянием сульфатовосстднавли-вающих бактерий процессы имеют место также в тех случаях, когда разложение органических веществ происходит под слоем воДы, содержащей растворенные сульфаты. Такое сочетание условий характерно, в частности, для Черного моря, со дна которого вследствие этого все время Выделяется сероводород. Однако до верхних слоев водй он не доходит, так как на глубинё примерно 150 л встречается с проникающим сверху кислородом и окисляется им при содействии живущих на этом уровне серобактёрийг [c.344]


Смотреть страницы где упоминается термин Окисляющие вещества, влияние: [c.32]    [c.32]    [c.357]    [c.301]    [c.416]    [c.236]    [c.255]    [c.325]   
Определение концентрации водородных ионов и электротитрование (1947) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества окисляемые

Окисляющие вещества, влияние на водородный электрод

Окисляющие вещества, влияние электрод



© 2025 chem21.info Реклама на сайте