Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура жидких

Рис. 18-3. Энтальпийный и энтропийный вклады в изменение свободной энергии испарения жидкой воды. Энтальпийный вклад, ДЯ°, преобладает при температурах ниже 373 К, и при таких температурах жидкая вода является термодинамически устойчивой формой по сравнению с парами воды, имеющими парциальное давле- Рис. 18-3. Энтальпийный и <a href="/info/173721">энтропийный вклады</a> в <a href="/info/12282">изменение свободной энергии</a> <a href="/info/96002">испарения жидкой</a> воды. <a href="/info/173721">Энтальпийный вклад</a>, ДЯ°, преобладает при <a href="/info/33739">температурах ниже</a> 373 К, и при <a href="/info/1755515">таких температурах</a> <a href="/info/98098">жидкая вода</a> является <a href="/info/776">термодинамически устойчивой</a> формой по сравнению с <a href="/info/122019">парами воды</a>, имеющими парциальное давле-

    Хранение в замороженном грунте осуществляется под давлением до 2,5 кПа и при температуре жидкой фазы, например, для пропана —42 °С. Хранилище оборудуют трубопроводами для подачи и отбора сжиженного газа, трубой, снабженной дыхательными клапанами, огнепреградителями и соответствующими контрольноизмерительными приборами. Подземные хранилища заполняют до уровня 0,6 м от верха. Некоторую сложность представляет собой перекачивание жидкой фазы. [c.292]

    МЕТОД ЭКСТРАПОЛИРОВАНИЯ ТЕПЛОЕМКОСТЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НИЖЕ ТЕМПЕРАТУРЫ ЖИДКОГО ВОЗДУХА [c.79]

    При однократной перегонке высококипящих остатков в вакууме возможны осложнения, обусловленные использованием аппарата ОИ. Рекомендуется поддерживать постоянной скорость подачи сырья 400 мл/ч, для того чтобы обеспечить время пребывания жидкой фазы в испарителе от 19 до 70 мин в зависимости от доли отгона. Состояние равновесия следует считать достигнутым при совпадении температур жидкой и паровой фаз и температуры теплоносителя в бане с заданной точностью 1—2%. Максимальные колебания давления в системе не должны быть более 1,33 гПа, возможные изменения доли отгона составят при этом не более 1,5—1,7% (масс.). Надежность экспериментальных данных однократного испарения смесей следует косвенно проверять по непрерывному характеру изменения некоторых свойств паровой и жидкой фаз в зависимости от доли отгона, а именно плотности, молекулярной массы и коксового числа [58]. [c.59]

    Исключительно активно протекает взаимодействие фтора с большинством простых веществ. С серой и фосфором он взаимодействует даже I ри температуре жидкого воздуха (—190°С)  [c.281]

    По мере перехода от нижних тарелок отгонной колонны к верхним температуры жидких и паровых потоков уменьшаются, а содержание в них НКК растет. Уместно задаться вопросом, есть ли предел этому увеличению или оно при всех условиях может идти как угодно далеко. [c.142]

    Периодичность процесса накладывает особый отпечаток и на характер работы укрепляющей колонны, связанной с кубом. Непрерывное обеднение состава идущих из куба паров низкокипящим компонентом влечет за собой непрерывное же изменение составов и температур жидких и паровых фаз па тарелках укрепляющей колонны. Эта особенность периодической ректификации коренным образом отличает ее от непрерывной ректификации, характеризующейся неизменными во времени составами и температурами фаз на каждом определенном уровне колонны. Эта же особенность периодической ректификации является основной причиной трудностей, связанных с обоснованием и разработкой методики ее расчета. [c.220]


    В процессе непрерывной ректификации неизменность во времени составов и температур жидких и паровых потоков, пересекающих один и тот же горизонтальный уровень, позволяет сделать принципиально важный вывод о постоянстве разности масс и энтальпий встречных разноименных потоков на любом уровне по высоте укрепляющей колонны. Однако для условий периодической ректификации, когда поступающие в колонну пары непрерывно утяжеляются, этот вывод уже не является справедливым. В самом деле, количества вещества и тепла, поступающие в течение определенного конечного промежутка времени в произвольно выбранный объем периодически действующей укрепляющей колонны, не будут равны количествам вещества и тепла, покидающим этот же объем колонны в течение другого промежутка времени равной продолжительности. Это и является основной причиной того, что, несмотря на наличие строго разработанной теории непрерывной ректификации, до сих пор не предложено столь же убедительной теории для периодического процесса. Однако при ближайшем рассмотрении этой проблемы можно установить некоторые особенности, позволяющие привлечь к анализу периодической ректификации принципиальные положения, оказавшиеся плодотворными при изучении процесса непрерывной ректификации. [c.221]

    При испарении слоя В, для которого компонент а играет роль низкокипящего, температура жидкой фазы и ее состав по компоненту ЗУ по мере перегонки прогрессивно растут до тех пор, пока не будет достигнута точка кипения tw компонента да. Этот процесс характеризуется кривой кипения ВО и кривой конденсации ЕО, сходящимися в одной точке О, отвечающей чистому компоненту да и его точке кипения [c.27]

    Пусть рассматривается равновесная двухкомпонентная трехфазная система компонентов а и -гу, характеризующихся весьма малой взаимной растворимостью, состоящая из двух жидких слоев >4 и б, находящихся при определенной температуре в равновесии с паровой фазой V. Мольные составы х а и л в характеризуют оба насыщенных при данной температуре жидких слоя Л и В, находящиеся в равновесии друг с другом и с общей им паровой фазой V состава у е. [c.156]

    JL о,14 2 котором (I вычисляется при средней температуре жидко- [c.64]

    Температура кипения жидкого азота при атмосферном давлении примерно на 10 град ниже температуры конденсации кислорода при том же давлении. В связи с этим возможна конденсация воздуха на предметах и стенках сосудов, имеющих температуру жидкого азота. [c.198]

    Интервал используемых температур весьма широк от температуры несколько ниже темиературы окружающей среды до температуры жидкого гелия. [c.121]

    В связи с этим метод экстраполирования теплоемкостей органических соединений ниже температуры жидкого воздуха, предложенный Парксом и Хаффменом [3, 4], следует рассматривать как приближенный, а результаты расчетов величин энтропии, выполненные таким путем, необходимо контролировать, например, посредством сопоставления с результатами вычислений по молекулярным константам и спектроскопическим данным (см. главу VII). [c.84]

    Крекинг. В литературе описан способ крекирования смеси побочных продуктов при 300—380 °С и атмосферном давлении в присутствии серной кислоты как катализатора или без нее . При осуществлении процесса периодическим способом температуру в аппарате постепенно повышают до 380 °С и непрерывно отбирают образующиеся дистиллятные продукты. В том случае, если предполагается использовать фенолы в виде смеси, из дистиллята выделяют только хлорбензол. если нужно получать индивидуальные фенолы, проводится ректификация дистиллята. Крекинг можно вести до образования жидкого остатка или до кокса и в том и в другом случае остаток легко выгружается из аппарата. Температуру жидкого остатка нужно поддерживать 150—200 °С, а кокс можно выгружать и после охлаждения. [c.182]

    Экстракционная колонна работает при избыточном давлении 6 ат, температура потока бензина, входящего в ее нижнюю часть, равна около —55 °С, а температура жидкой ЗОз, поступающей на верх колонны — около —45 °С. [c.62]

    На рис. 29 изображена схема одной из установок для адсорбции азота при температуре жидкого воздуха. Ее важнейшими частями являются калиброванная ампула 1 [c.73]

    В присутствии хлористого алюминия полимеризация начинается при очень низких температурах. Свеже приготовленный хлористый алюминий дает уже при обыкновенной температуре жидкий продукт, содержащий нафтены только во фракциях, кипящих выше 20о° О. рри 240° и 72 от жидких продуктов образуется мало, но главным образом углистый остаток и газ. [c.325]

    В табл. 4-14 приведены технические характеристики подогревателей азота и воздуха, основных теплообменных аппаратов и переохладителей жидких азота и воздуха. Теплообменные аппараты-подогреватели применяют для повышения температуры Жидкого азота или воздуха за счет теплообмена с горячей водой или с потоком петлевого воздуха. Эти теплообменники представляют собой [c.179]


    Для перегонки термически нестабильных веществ применяют также испаряющий агент, в качестве которого обычно используют перегретый водяной пар. С введением в колонну водяного пара снижается парциальное давление углеводородов, а значит, и их температура кипения. Водяной пар подают в низ колонны. При испарении углеводородов здесь, снижается температура жидкой фазы, поэтому эффективность действия водяного пара ограничена. [c.34]

    Холодное сырье (ГОО—170°С) поступает под уровень раздела фаз, находящийся в зоне сепарации и квенчинга (рис. 41). В эту же зону из ниже расположенной зоны реакции поступает прореагировавшая горячая (290—300°С) газожидкостная смесь. За счет перемешивания двух потоков с разной температурой устанавливается промежуточная температура жидкой фазы. С этой температурой жидкая фаза по перетоку, снабженному регулирующим клапаном и гидравлическим затвором, под действием силы тяжести поступает в зону реакции. В нижнюю часть зоны реакции подается воздух. [c.77]

    В обычной колонне температура жидкой фазы по всей высоте аппарата одинакова и повышение температуры автоматически приводит к повышению температуры в газовом пространстве. Здесь же благодаря наличию разделительного устройства, перетока, организации определенного движ,ения потоков газа и жидкости и квенчингу сырьем поддерживаются разные температуры по высоте жидкой фазы в зоне реакции относительно высокая, в зоне сепарации — низкая. Регулирование температурного режима двухсекционной колонны в целом не отличается от регулирования обычной колонны, а изменение температуры по секциям достигается регулированием количества потока, перетекающего из верхней секции в нижнюю. Так, для снижения температуры в верхней секции уменьшают переток, т. е. снижают поступление в верхнюю секцию из нижней жидкой - фазы, имеющей более высокую температуру. Уровень в колонне поддерживают как обычно, изменяя подачу сырья или вывод битума. [c.77]

    В работах [107, 108]температуры жидкой фазы на конечной стадии лабораторной перегонки доходили до 400—420°С при [c.81]

    При получении жидкого кислорода и жидкого воздуха исследователи заинтересовались вопросами протекания химических реакций в этих средах. Было установлено, что натрий и серная кислота в жидком воздухе не реагируют друг с другом. Калий, имеющий большое сродство к кислороду, может быть погружен в жидкий кислород, не окисляясь при этом. Вместе с тем Ж- Клод установил, что гремучая ртуть при температуре жидкого кислорода взрывается от простого толчка. [c.44]

    Наиболее удобными методами изучения кластеров (НгО) (л>2) являются различные варианты масс-спектроскопической техники [363]. Естественно, что чем ниже температура эксперимента, тем более крупные кластеры (с большим п) удается наблюдать. Так, удалось зарегистрировать в спектре пик, соответствующий п= [368] и /г = 36 (температура 77 К) [369]. При температуре жидкого азота были зарегистрированы положительно заряженные кластеры с л от 1 до 40 [370]. В работе [371] удалось наблюдать отрицательно заряженные кластеры, содержащие вплоть до 50 молекул воды. В этой работе была сделана попытка изучить структуру этих кластеров методом электронной дифракции. Авторы приходят к выводу, что по своей структуре эти кластеры не являются фрагментами кристаллов льда, а аморфны. Были также оценены дипольные моменты кластеров с л от 2 до 6 дипольные моменты кластеров с п = = 3- 6 близки к нулю, что, по мнению авторов, свидетельствует о циклическом характере их структуры [361]. Много экспериментальных данных о существовании и свойствах кластеров, состоящих из нескольких десятков молекул воды, приводится в работе [372]. [c.133]

    Кюри. Многие вещества, которые в твердо.м состоянии при температурах, близких к комнатной, ведут себя как парамагнетики, при температурах ниже температуры жидкого гелия (4,2 К) проявляют слабые ферромагнитные или антиферромагнитные свойства. [c.132]

    Напряжение на образец подавали при комнатной температуре, после чего ячейку охлаждали до температуры жидкого азота (скорость охлаждения образца в стеклянных ячейках составляла 1—5 К/мин, в металлической ячейке 30—40 К/мин). Затем напряжение снимали, обкладки конденсатора закорачивали на несколько минут, и образец постепенно нагревался за счет естественного притока тепла. При этом токи ТСД регистрировались электрометром, присоединенным к обкладкам конденсатора. В одной из измерительных ячеек была предусмотрена возможность подъема и опускания потенциального электрода, что позволяло измерять поверхностную плотность зарядов методом электростатической индукции [676.  [c.256]

    Пример 6.5. Рассчитать и подобрать стандартный аппарат воздушного охлаждения для конденсации и последующего охлаждения 13 600 кг/ч углеводорода при избыточном давлении р = 0,06 МПа. Конечная температура жидкого углеводорода I = 45 °С. Аппарат устанавливается в районе г. Баку. [c.189]

    Уширение, обусловленное спин-решеточной релаксацией, возникает по причине взаимодействия парамагнитных ионов с термическими колебаниями решетки. Изменение во времени спин-решеточной релаксации в различных системах достаточно велико. Для некоторых соединений это время настолько велико, что их спектры удается наблюдать при комнатной температуре. Поскольку, как правило, время релаксации увеличивается с уменьшением температуры, хорошо разрешенные ЭПР-спектры многих солей переходных металлов можно получить лишь при температурах жидкого азота, водорода или гелия. [c.47]

    Определять восприимчивость в широком диапазоне температур, вплоть до температуры жидкого гелия удобно также с помощью магнетометра [21]. Изменение индуктивности катушки при введении в нее образца можно связать с восприимчивостью последнего. В работах [22, 23] описано определение восприимчивости с использованием обычного моста индуктивности. Описан также исключительно чувствительный сверхпроводящий квантовый магнетометр с элементом Джозефсона [24]. [c.156]

    В двухфазных парожидких системах, обладающих, согласно правилу фаз. двумя степенями свободы, испарение однородной жидкой фазы сопровождается преимущественным выкипанием одного из компонентов, играющего роль низкокипящего и вследствие этого темперагура системы прогрессивно в ходе перегонки возрастает до точки кипения второго компонента, играющего роль высококипящего, согласно изобарным кривым кипения и конденсации. Поэтому при раздельно ,I испарении слоя А, для которого компонент да играет роль низкокипящего, температура жидкой фазы растет в ходе перегонки, а жидкость обогащается компонентом а до тех пор-лока не будет достиг, нута его точка кипения. Этот процесс характеризуется кривой кипения АС и кривой конденсации СЕ, сходящимися в одной точке С, отвечающей чистому компоненту а и его точке кипения 4. [c.27]

    Общие соображения показывают, что разность между температурами жидкой и твердой фаз в процессе фильтрации должна быстро исчезать из-за огромной поверхности теплообмена между флюидами и скелетом, так что температуры допустимо считать одинаковыми. Более точный ответ может дать следующая оценка. Характерный размер, поры / имеет порядок 10 м или менее, температуропроводность, насыщенной пористой среды х обычно порядка 10 м /с. Тогда выравнивание температуры между флюидом и скелетом должно происходить за время t = / /х = 10 с. Если нас интересуют фильтрационные процессы, с характерными временами такого порядка, то разницу температур флюида и скелета необходимо учитывать. В противном случае можно считать, что Т,., = Т. Мы так и будем делать, поскольку для технологических процессов разработки месторождений время 10 с ничтожно мало(.о Запишем теперь соотношение, выражающее баланс энергии дл системы жидкость - пористая среда. Пористую среду будем считат .. недеформируемой. Вследствие малости скоростей фильтрации пренебрежем изменением кинетической энергии флюида. Тогда, если 7-внутф ренняя энергия некоторого объема флюида и скелета, П-энергия флюида в поле потенциальных сил (в нашем случае-поле силы тяжести), тср/ согласно первому началу термодинамики имеем  [c.316]

    Температура вспышки реактивных топлив-мш1имальная температура жидкого топлива, при которой его пары образуют смесь с воздухом, способную загораться при поднесении пламени. Ее определяют по ГОСТ 6356-75 в закрытом тигле-специальном приборе (ГОСТ 1421-79), показанном на рис. 36 (см. гл. 4). Определение ведут в основном так же, как и для дизельных топлив (см. гл. 4). Отличие заключается лишь в режиме нагрева. Скорость нагрева топлива в приборе регулируют, причем вначале она составляет 5-8°С/мин, а за 30 °С до ожидаемой температуры вспьпп-ки-2 С/мин. Допускаемые расхождения между параллельными определениями составляют 1°С при температуре вспышки до 50 °С и 2°С-при более высокой. Температура вспышки реактивных топлив приведена ниже  [c.125]

    Так как измерения теплоемкости при очень низких температурах, особенно вблизи от абсолютного нуля, связаны со значительными затруднениями, некоторыми исследователями делались попытки найти способ экстраполяции теплоемкости в область низких температур на основе данных, прлученных при температурах выше температуры жидкого воз-Духа., [c.79]

    Каждый насос имеет при определенных условиях работы допустимую вакуумметрическую высоту всасывания, которая характеризует его способность поднимать жидкость в цилиндр. Кроме рас-смотреппых выше факторов она зависит от температуры перекачиваемой жидкости чем выше температура, тем меньше высота всасывания. В заводских каталогах допустимая вакуумметрическая высота всасывания указывается при определенной температуре жидк )сти, например для воды при температуре 20° С. [c.107]

    Из рис. У-5 видно, что при предварительном быстром нагреве степень превращения повышается по сравнению с равномерным нагревом при одинаковом суммарном расходе тепла. В данном примере выбор тепловых нагрузок 37 800 и 12 600 вт1м был сделан неудачно, поэтому температура жидкой фазы уменьшилась в последней секции печи. В общем случае отрицательный температурный градиент вдоль реактора будет приводить к образованию кокса на поверхности труб. Выбор тепловых потоков плотностью 31 460 и 8670 вт1м возможно улучшит температурный режим печи по сравнению с равномерным подводом тепла (25 200 вт/м ). [c.163]

    Экспериментально установлено, что состав пара смеси в общем случае не совпадает с составом жидкости, находящейся в равновесии с этим паром. На различии составов жидкости и пара основана перегонка смесей, имеющая большое практическое значение. На рис. 93 приведена зависимость температуры кипения от состава жидкости (кривая и пара (кривая а в). Точка t отвечает температуре кипения чистого компонента А, точка tв. — температуре кипепия компонента В. Область / относится к жидкости область // —к пуру. При этих условиях однофазные двухколшо-нентные системы имеют две степени свободы состав и температуру. Точка а обозначает жидкость состава х - При повышении температуры жидкой смеси до температуры / она закипит. [c.198]

    Температурой вспышки принято называть ту температуру жидкого тошшва, при которой топливо, будучи нагрето в строго определенных условиях, выделяет достаточное количество паров для того,чтобы смесь их с окружающт.1 воздухом могла вспыхнуть при поднесении к ней источника огня (плаш, искра). При этом происходит только вспышка, а само топливо ещё не загорается. [c.112]


Смотреть страницы где упоминается термин Температура жидких: [c.319]    [c.23]    [c.28]    [c.96]    [c.349]    [c.219]    [c.492]    [c.10]    [c.82]    [c.26]    [c.41]   
Товарные нефтепродукты, их свойства и применение Справочник (1971) -- [ c.337 , c.338 ]




ПОИСК







© 2025 chem21.info Реклама на сайте