Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий отделение

    Несмотря на исключительно многообразные возможности применения редких металлов и их сплавов, выделим здесь лишь некоторые основные области их применения. Это прежде всего ядерная техника, где необходимы такие металлы, как бериллий, ниобий и цирконий и др., в качестве материалов оболочки ядерного горючего в различных типах реакторов. Эти металлы отличаются малым сечением захвата тепловых нейтронов, высокой твердостью при рабочих температурах, хорошей теплопроводностью, устойчивостью к коррозии и т. д. Галлий и литий предложены, кроме того, в качестве рабочих жидкостей [последний— при условии его отделения от изотопа зЫ почему ) ]. Благодаря свойству значительно поглош,ать нейтроны гафний индий и европий используют для изготовления регулирующих стержней. Значительное количество редких металлов потребляет производство стали. Наряду с чистыми легирующими компонентами (например, Мо, V, , V) ряд редких и др. металлов используется в качестве раскислителей (например, редкоземельные элементы, кремний). Для современной авиационной промышленности и космической техники необходимы жаростой- [c.589]


    Очевидно, что для каждого элемента наименьшим будет первый ионизационный потенциал, так как отделение второго электрона производится уже не от нейтрального атома, а от положительно заряженного иона, что требует затраты большего количества энергии. Поэтому каждый следующий ионизационный потенциал всегда будет больше предыдущих. Однако, наряду с таким постепенным возрастанием их, можно легко обнаружить и наличие резких скачкообразных увеличений, как, например, при переходе от первого ко второму потенциалу для лития или натрия, при переходе от второго к третьему потенциалу для бериллия или магния. В табл. I эти скачки показаны жирными вертикальными линиями. [c.34]

    Реакция представляет большой интерес в связи с возможностью ее использования для отделения бериллия от алюминия и железа, так как гидроксиды этих элементов малорастворимы в карбонате аммония. [c.176]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]

    Все применяемые в настоящее время методы получения самого металла и его соединений из рудных концентратов основаны на отделении бериллия от сопутствующих элементов (в первую очередь от алюминия, железа и кремния). Химические основы методов изложены в предыдущем разделе. Эти методы были разработаны в свое время применительно к бериллу. Но они могут быть использованы и для переработки других минералов бериллия, имеющих в настоящее время промышленное значение, так как за исключением хризоберилла все эти минералы являются силикатами и в достаточной степени однотипны по основным примесям. [c.192]

    Бериллий Отделение от магния рН = 3 ч- 4 Перфтормасляная кис- . [99] [c.142]

    Одним из методов отделения бериллия от примесей, разработанным в СССР, является обработка технической гидроокиси бериллия уксусной кислотой. Основной ацетат бериллия очищают сульфидным и ионообменным методами и затем перегоняют. Полученный чистый продукт подвергают пиролизу при 600—700 °С с образованием ВеО. Такая окись может быть использована для [c.529]


    Реакцию проводят в индукционной электрической печи при 1000 С. Затем полученную массу нагревают до 1300 С для расплавления бериллия и отделения его от шлака М(р2. [c.329]

    Сульфат бериллия образует двойные соли с сульфатом аммония и сульфатами щелочных элементов. Но эти соли (типа шенитов) в отличие от двойных сульфатов магния и алюминия хорошо растворяются в воде. В присутствии сульфата бериллия растворимость алюмоам-монийных квасцов еще более уменьшается, что увеличивает эффект разделения элементов. Способ отделения алюминия от бериллия в виде алюмоаммонийных квасцов один из самых надежных. [c.175]

    Разработан также способ отделения катодного бериллия от хлоридов непосредственной отгонкой их в вакуумной печи при 650—700° С. Возогнанные хлориды и расплавленный электролит собираются в охлажденном никелевом приемнике, из которого они перегружаются в электролизер. [c.326]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Сопоставление кривых позволяет сделать вывод о возможности использования сульфатов для отделения бериллия от магния и алю- [c.174]

    Летучесть хлорида бериллия ниже, чем хлоридов алюминия, железа и кремния (рис. 28). Этим пользуются для отделения бериллия от указанных элементов, например, при хлорировании берилла. [c.183]

    Органические основания — этилендиамин, пиридин, фенилгидра-зин — применяются как реагенты. Например, пиридин и фенилгидра-зин применяют для отделения алюминия от железа, уротропин — для отделения бериллия от алюминия. [c.104]

    Аналогично алюминий можно отделять от 2п, Сс1 и Си [51]. Описано отделение Си от А1 из азотнокислых [472], уксуснокислых и аммиачных [612] растворов, содержащих тартраты. Алюминий при осаждении в виде оксихинолината из уксуснокислого раствора отделяется от бериллия [1013], а в присутствии высоких концентраций карбоната аммония — и от урана, который образует с последним прочный комплекс [942]. Для полного отделения от урана необходимо переосаждение. [c.37]

    Рекомендации некоторых авторов об отделении алюминия от бериллия осаждением на холоду неприемлемы, так как на холоду алюминий также осаждается плохо. [c.48]

    Для отделения титана (IV) от железа, алюминия, хрома (III), индия, бериллия и урана (VI) применяют 0,5 7о-ный раствор коричной кислоты. Растворяют 5 г коричной кислоты в 1 л воды при нагревании до кипения и полного растворения кислоты фильтруют через двойной фильтр синяя лента. Так как растворимость коричной кислоты в холодной воде очень мала, то по мере остывания она выкристаллизовывается. Перед употреблением раствор нагревают до кипения и растворения коричной кислоты, затем отбирают его для осаждения в горячем состоянии. [c.161]

    Метод пригоден для количественного определения тория в присутствии других р.з.э. [53, 54, 57, 60, 355, 413, 569], а также щелочных металлов, бора, бериллия и мышьяка [1135. При определении малых количеств тория в присутствии больших количеств урана получаются заниженные результаты. Цирконий должен быть предварительно отделен, в противном случае полнота осаждения тория не достигается [876, 1096] титан, по-видимому, не мешает [876]. [c.32]

    ОТДЕЛЕНИЕ ТОРИЯ ОТ БЕРИЛЛИЯ [c.149]

    Осаждение тория из уксуснокислого раствора в присутствии ацетата аммония таннином использовано для отделения его от бериллия, который выделяется реагентом лишь при добавлении избытка аммиака. Т1, 2г, V, Ре , А1, Сг и ведут себя аналогично торию. [c.151]

    Если анализируемый раствор содержит никель, то отделение урана вместо карбоната аммония лучше проводить при помощи карбоната натрия, В этом случае для более полного отделения гидроокисей железа, алюминия и некоторых других элементов рекомендуется вводить в раствор также перекись натрия. Щелочноземельные металлы, бериллий, марганец, кобальт, цинк и ряд других элементов отделяются с применением карбоната натрия несколько более полно, однако алюминий отделяется недостаточно хорошо. Если осадок гидроокисей и карбонатов значителен, то для более полного разделения необходимо его снова растворить в кислоте и провести повторное осаждение. [c.262]

    Переработка берилла. Основное сырье бериллиевой промышленности — минерал берилл (алюмосиликат бериллия) Вез [AbSieOis] — перерабатывают для получения металлического Ве несколькими способами. Одна из главных задач, решаемых технологией переработки берилла — отделение Ве от А1, близкого по свойствам. [c.46]


    Алимарин И. П., Гибало И. М., Журн. анал. хим., 11, 389 (1956).— Бериллий отделен от двухвалентных металлов, А1 и Сг экстракцией ацетилацетоном — четыреххлористым углеродом в присутствии ЭДТА. [c.289]

    Методы разделения данной группы ионов следует находить по первой графе для каждого из разделяемых ионов. hJanpnMep, методы отделения алюминия от бериллия следует находить по первой графе таблицы ие только при алюминии (III группа), но и при бериллии <И группа). Ионы отнесены к выделяемым или к отделяемым условно, в соответствии с методом выделения данного нона, указанным в третьей графе. [c.59]

    Высокую летучесть ацетилацетоната бериллия можно использовать в газовой хроматографии в чисто исследовательских целях и для разделения близких по свойствам металлов [22]. Хорошая растворимость ацетилацетоната бериллия во многих органических растворителях, в частности в хлорофюрме, используется в аналитической практике для отделения бериллия от примесей экстракцией в присутствии комплексообразователей, препятствующих экстрагированию примесей [28]. [c.178]

    Полученные при выщелачивании фторобериллатные растворы содержат значительно меньше примесей, чем растворы от выщелачивания продуктов сульфатизации берилла. Поэтому их обычно не подвергают специальной очистке, а сразу же направляют на дальнейшую переработку. В схемах, предусматривающих получение бериллия в виде окиси или гидроокиси, следующий этап — это гидролитическое осаждение бериллия, в процессе которого может быть произведено попутное отделение от таких примесей, как железо и алюминий. При осаждении гидроокиси необходимо учитывать способность ее выделяться в зависимости от условий осаждения в аморфной или кристаллической (хорошо фильтруемой) (3-форме. [c.194]

    Продукт сульфатизации выщелачивают водой с целью извлечения растворимых сульфатов и отделения от SIO2. Сульфатный раствор очищают прежде всего от алюминия и железа. Чтобы удалить большую часть алюминия в виде алюмоаммонийных квасцов (этот метод наиболее распространен), в горячий раствор вводят в избытке сульфат аммония. При охлаждении раствора 75% алюминия выделяется в виде квасцов. По данным чешских исследователей [69], алюминий может быть выделен из сульфатных растворов па катионите в условиях эксперимента (0,7 н. H2SO4) бериллий проходит через колонку, не сорбируясь. В дальнейшем десорбция алюминия осуществляется соляной кислотой. [c.198]

    Известны следующие методы, основанные на равновесии этих типов выделение определяемых элементов Б виде летучи соединений с кислородом, например воды, диоксида углерода, серы в виде 802 или 50з) выделение элементов в виде летучих соединений с галогенами, например отгон]<а АзС1з, СгСЬ, ОеСи, 8ЬС1з и др. выделение элементов в виде летучих соединений с водородом, например АзНз и др. метод газовой хроматографии, в котором некоторые неорганические вещества переводят в газообразное состояние, например кремний, германий, мышьяк, олово, бериллий определяют в виде летучих гидридов после их отделения от многих элементов, не образующих летучих соединений с водородом. [c.27]

    ВеО = 1 5 до 10 1). Алюминий можно отделить от бериллия при соотношениях AlgOg ВеО от 1 16 до 1 3 с помощью п-хлоранилина [1142]. Описан способ отделения алюминия от железа о-фенетиди-ном [628]. Железо должно быть предварительно восстановлено до двухвалентного состояния сероводородом. [c.48]

    Криолитовый метод описан для определения алюминия в сталях (403, 920], в интерметаллидных фазах, содержащих Ni, Со, Сг, Fe, Ti, Zr, V, Mo, W и Nb [512], в ферросплавах [29, 40, 332a], в силико-цирконии 139], в алюминиевых бронзах [41], в латуни, в шлаках, для отделения алюминия от титана [3911 и от бериллия [1104, 1126]. [c.59]

    Нельсон и др. [1012], а также Пахолков и Рылов [331а] изучили возможность отделения алюминия от других металлов в виде фторидного комплекса. Из растворов HF — НС1 и HF— H SO , алюминий сильноосновными анионитами не поглощается, слабоосновными анионитами (ЭДЭ-ЮП, АН-2Ф) сорбируется в значительной степени, что позволяет отделить его от многих металлов. Наибольшая сорбция наблюдается из 0,1 N НС1 и H2SO4 при 2 Ai HF). С увеличением концентрации НС и H2SO4 и уменьшением концентрации HF сорбция сильно убывает. Бериллий поглощается сильноосновными анионитами из раствора, 0,01 N по НС и 1 Ai по HF, что позволяет отделить его от алюминия. [c.187]

    Осаждение основного ацетата бериллия Отгонка борнометилового эфира Отделение кадмия экстракцией Отгонка с носителем Ag l [c.105]

    Малорастворимый осадок КРи[Ре(СЫ)е] 7НгО, выпадающий из 0,8 М солянокислого раствора плутония(III) при добавлении ферроцианида калия, может быть использован для отделения плутония от фосфатов и арсенатов [273]. Одним из немногих возможных отделений с ферроцианидом является отделение от бериллия. Реакция малоселективна и имеет ограниченное применение. [c.295]

    Отделение тория от бериллия плавиковой кислотой осуществляется путем осаждения труднорастворимого фторида тория и перехода прн этом бериллия в раствор в виде комплексного соединения с анионом [Вер4]2 . Как и в случае алюминия, мещают соли щелочных металлов. [c.150]

    Хлористый бериллий готовят постепенным прибавлением 6н. НС1 к 3 г основного углекислого бериллия, суспендированного в 45 мл воды до тех пор, пока раствор не станет слегка кислым (требуется приблизительно 20 мл кислоты). Для ускорения растворения суспензию нагревают и встряхивают. К свежеперегнанному ацетил-ацетону (10 г), суспендированному в 45 мл воды, по каплям из бюретки прибавляют при встряхивании 6 н. раствор аммиака до полного растворения ацетилацетона. Раствор фильтруют для отделения от незначительных количеств нерастворившихся веществ и прибавляют при встряхивании к раствору хлористого бериллия. Реакционная смесь должна быть почти нейтральной по лакмусу. Выделившийся ацетилацетонат бериллия фильтруют с отсасыванием, промывают водой и сушат на воздухе. Выход 7 г (70%). Сырой продукт можно очистить растворением в минимальном количестве бензола, фильтрованием (для удаления нерастворяющихся в бензоле веществ) и осаждением ацетилацетоната постепенным прибавлением при встряхивании петролейного эфира. Осадок промывают петролейиым эфиром. Соединение, приготовленное этим методом, представляет собой мелкие белые кристаллы. Бесцветные кристаллы получаются кристаллизацией из петролейного эфира или бензола. [c.22]

    Оксихинолин осаждает уран (VI) из растворов с pH в преде-J ax от 4,1 до 13,5 [8, 553]. При осаждении из растворов с pH 10— 12 уран отделяется от фосфатов, тартратов, небольших количеств фторидов, оксалатов, лактатов и гидроксиламина [436, 846]. Однако одновременно с ураном 8-оксихинолин осаждает также очень много других элементов. Осаждение урана (IV) также мало избирательно, как и осаждение урана (VI). За счет соответствующего подбора pH уран может быть отделён от ряда элементов, в частности. Из растворов, содержащих едкий натр, 8-оксихинолиц не осаждает олова, алюминия, бериллия и щелочноземельных металлов. Методики осаждения урана (VI) из слабокислых и щелочных растворов приводятся в разделе Весовые методы определения . Однако практического значения отделение урана при помощи 8-оксихинслина [c.275]

    Целочноземельные металлы, а также другие легкие элементы частично или полностью осаждаются совместно с ураном. Осаждение урана ферроцианидом калия оказывается подходящим только для отделения от бериллия [881], а также от фосфатов и арсенатов [526]. В этом случае после отделения кремневой кислоты выпариванием раствора с соляной кислотой раствор нейтрализуют до слабокислой реакции, прибавляют избыток ферроцианида калия и насыщают хлоридом натрия. Осадок отфильтровывают, промывают декантацией раствором хлорида натрия, затем переносят на фильтр и тщательно промывают тем же раствором. Полученный осадок разлагают на холоде разбавленным раствором едкого калия, образовавшиеся гидроокиси промывают водой, содержащей хлорид аммония и небапь-шое количество аммиака, до отсутствия ионов ферроцианида в фильтрате. Затем осадок гидроокисей растворяют в соляной кислоте, нейтрализуют аммиаком до почти нейтральной реакции и прибавляют небольшой избыток карбоната аммония. После отстаивания осадок отфильтровывают и промывают водой, содержащей небольшое количество карбоната аммония. Фильтрат нагревают до разложения большей части карбоната аммония, затем подкисляют и ки- [c.278]


Смотреть страницы где упоминается термин Бериллий отделение: [c.289]    [c.204]    [c.182]    [c.207]    [c.151]   
Практическое руководство по неорганическому анализу (1966) -- [ c.525 , c.582 ]

Качественный химический анализ (1952) -- [ c.13 , c.308 ]

Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Практическое руководство по аналитической химии редких элементов (1966) -- [ c.50 , c.53 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.480 , c.532 ]

Основы аналитической химии Издание 2 (1965) -- [ c.284 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.570 ]




ПОИСК







© 2024 chem21.info Реклама на сайте