Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменник пористость

    Жидкостные мембранные электроды существуют в двух принципиально различающихся модификациях. Электроды более ранней модификации, в настоящее время уже мало распространенные, содержат пропитанную раствором ионообменника пористую диафрагму, которая закрывает корпус электро- [c.79]

    Осложнения при работе с жидкостными электродами с диафрагмами из различных пористых материалов обусловлены главным образом постепенным растворением органического ионообменника во внешнем растворе. Кроме того, не просто достичь полного заполнения пор диафрагмы органическим раствором. Эти трудности удалось преодолеть, когда были разработаны так называемые пленочные электроды, в которых мембрана представляет собой полимерную пластифицированную пленку с введенным в нее раствором жидкого ионита или хелата в органическом растворителе, несмешивающемся с водой. Этот растворитель одновременно служит и пластификатором. [c.537]


    Недостатком синтетических ионообменников является их малая механическая прочность, что приводит к разрушению частиц ионита при высоком давлении, характерном для ВЖХ. Для уменьшения сопротивления массопереносу и увеличения механической прочности используют поверхностно-пористые смолы, представляющие собой тонкую пленку ионообменника, нанесенного на твердое инертное тело, например на частицы силикагеля. Подобные ионообменники используют преимущественно для разделения органических веществ в высокоэффективной жидкостной хроматографии. Ионообменники можно разделить на классы в зависимости от ряда обмениваемых ионов. [c.604]

    Ионообменники характеризуются степенью набухания и емкостью. Степенью набухания называют объем упакованного в колонну обменника (в мл), приходящийся на 1 г его в сухом виде, и имеет размерность мл/г. Максимальное количество ионов, которое может связать ионообменник, определяет его емкость, которая совпадает с концентрацией ионогенных групп. Ёмкость выражается числам ммоль эквивалентов обмениваемого иона на 1 г сухого обменника (ммоль экв/г) или на 1 мл упакованного в колонну набухшего ионообменника (ммоль экв/мл) при значениях pH, соответствующих его полной ионизации. Для высокомолекулярных ионов или амфолитов, например белков, вводят понятие эффективная емкость, которая зависит от размера молекулы амфолита, расстояния между ионогенными группами и степени доступности всего объема пористой матрицы обменника для этих молекул. Понятия емкости и эффективной емкости могут не совпадать. Иногда приходится снижать полезную емкость сорбента за счет изменения pH, увеличивая при этом его эффективную емкость. Катионообменные смолы имеют емкость около 4,4 ммоль экв/г, а анионообменные — 3,5-4 ммоль экв/г для гелеобразной структуры и 2,5 ммоль экв/г дпя пористой. Обменная емкость изменяется при изменении pH. При низких pH происходит нейтрализация катионита при добавлении протона  [c.34]

    Добиться высокой эффективности разделения удалось при использовании микрочастиц полностью пористого силикагеля, которому равномерно привита фаза, имеющая ионообменные группы. Силикагелевая основа делает материал более прочным. Проблемы набухания или усадки колонки редко возникают. Материал устойчив к любым буферным растворам, растворителям и высоким температурам (до 80 °С). Однако сильнокислотные или слабоосновные растворы (2>рН>7,5) могут привести разрушению силикагелевой основы. Как правило, эффективность, полученная на привитых ионообменниках, сравнима с эффективностью обращенно-фазных материалов одинакового зернения. [c.111]


    Жидкостные мембраны. В электродах с жидкостной мембраной пористая перегородка, пропитанная неводной фазой, разделяет две водные фазы - исследуемый раствор и внутренний раствор электрода. При этом неводная фаза содержит гидрофобные ионы (активные центры ионообменника), присутствие которых определяет ионоселективную функцию электрода, и противоположно заряженные определяемые ионы (противоионы). Поведение такой мембраны определяется коэффициентом распределения соли ионообменника с определяемым ионом между водным раствором и несмешивающимся с водой растворителем, образованием ионных пар в фазе мембраны и степенью проницаемости мембраны по отношению к посторонним ионам. [c.177]

    Вследствие просачивания белкового экстракта сквозь пористый материал желательно, чтобы раствор был совершенно очищенным во избежание загрязнения ионообменников. Для оптимального использования связывающей способности вещества необходима его равномерная пропитка без местных струйных протечек. Необходимо также, чтобы вещество было максимально однородно и не меняло объема с течением времени. [c.447]

    Пористые полимеры вначале стали получать для решения задач ионообменной хроматографии, когда потребовалось наряду с ионообменниками гелевой структуры иметь набор прочных ионообменных смол с регулируемой пористостью и облегченными путями внутренней диффузии [1, 2]. [c.5]

    В настоящее время представляется, что любой тип ионной или хелатной органической группы может быть присоединен к поверхности силикагеля с открытыми широкими порами или к поверхности кремнеземного порошка для того, чтобы получить пригодные ионообменные свойства. Унгер [6] обобщил различные способы, посредством которых на поверхности пористого кремнезема можно образовать связи Si—С. Этот вопрос будет обсужден ниже в гл. 7. Здесь же приводится рассмотрение только специфических ионообменников данного типа. [c.801]

    Макропоры Пористая поверхность, покрытая ионообменникам [c.25]

    Жидкие ионообменники, используемые в аналитической химии, обычно фиксируются на инертном пористом носителе, помещенном в колонку. [c.25]

    Исходя из пористой структуры органического ионообменника, можно рассчитать концентрацию обмениваемых групп относительно содержания воды в набухшей смоле. Концентрация, выраженная таким способом, представляет моляльность функциональных групп, т.е. количество (ммоль Н" ") обмениваемых ионов, относящееся к 1 г воды в набухшей смоле. Моляльность функциональных групп обменника не постоянная величина. Она зависит от состояния и состава обменника, а также от состава внешнего раствора. [c.95]

    Слой ионообменника находится в колонке на плоской подложке. Рекомендуется использовать фриттованные стеклянные диски соответствующей пористости, которые впаивают в нижнюю часть колонки. В тех случаях, когда фриттованные стеклянные диски не могут быть использованы, применяют сетки из нержавеющей стали или платины. При работе с маленькими и узкими колонками достаточно заполнить нижнюю часть колонки стеклянной ватой, пористым тефлоном, полиуретаном или другим подходящим материалом. [c.120]

    Равновесие обмена на анионообменных смолах. Пористые ионообменники [3204]. [c.484]

    Кристаллическая решетка каркаса алюмосиликатов построена из силикатных тетраэдров, в части которых кремний замещен на алюминий. Для Т01-0 чтобы такая система оставалась электронейтральной, в нее должны входить катионы или протоны, образующие гидроксильные группы. Известно множество такого рода структур. Некоторые из каркасных алюмосиликатов имеют пористую трехмерную решетку и, подобно слоистым алюмосиликатам, способны как к набуханию, так и к ионному обмену. К такого рода алюмосиликатам относятся, в частности, цеолиты, которые интенсивно исследуются и как ионообменники, и как адсорбенты газов (см., например, [86] и [87]). [c.334]

    Ухудшение свойств цеолита как ионообменника чаще всего проявляется в уменьшении обменной емкости. К уменьшению обменной емкости могут приводить разные причины, например блокировка или разрушение пористой структуры, механические потери от истирания и деструкция обменных центров под действием КИС лоты или необратимого обмена. [c.360]

    По структуре ионообменные смолы подразделяют на гелевидные и макропористые. В макропористых ионообменниках идет гетерогенный обмен ионами на поверхности пор. Их средний радиус чаще всего находится в пределах 0,01—0,1 мкм. Скорость обмена существенно зависит от пористости зерен, хотя она обычно и не влияет на их обменную емкость. Чем больше объем и размер пор, тем быстрее внутренняя диффузия. Суммарный удельный объем пор составляет доли кубического сантиметра на грамм зерен, а удельная поверхность измеряется десятками, а иногда достигает сотен квадратных метров на грамм зерен. [c.303]

    Хроматографическое разделение в открытой колонке занимает много времени. Это является основным недостатком классической колоночной хроматографии. Высокоэффективная жидкостная хроматография лишена этого недостатка. В этом высокопроизводительном методе наиболее широко применяют поверхностно-пористые ионообменники, обладающие рядом преимуществ по сравнению с обычными ионитами 1) они хорошо выдерживают давление 2) мас-сопередача в тонком поверхностном слое ионита осуществляется быстро, что обеспечивает установление равновесия за очень короткое время. [c.606]


    Декстран ( Sephadex ) — очень гидрофильный материал. Присоединение ионогенных групп происходит также по гидроксилалг полисахарида. Пористость и жесткость матриц на основе сефадексов зависит от процентного содержания сшивки (эпихлоргидрина). Модифицированные сефадексы для ионообменной хроматографии выпускаются на основе только двух типов сефадексов G-25 и G-50. Размеры пор у модифицированных сефадексов значительно выше, чем у двух исходных типов матриц, за счет уже знакомого нам эффекта расталкивания одноименно заряженных ионогенных групп. Ионообменные сефадексы соответственно и менее жестки их объемы тоже могут изменяться в зависимости от pH и ионной силы элюента. Особенно сильно это выражено у ионообменников, полученных на основе сефадекса G-50. Рабочий диапазон pH 2—12. [c.251]

    Матрицы для ЖХВД. К их числу можно отнести особо мелкозернистые, с малым разбросом диаметров сферические ионообменники на основе полистирола (например типа Aminex ), специально разработанные для использования в аминокислотных анализаторах и жидкостных хроматографах высокого давления. Для последней цели чаще всего применяют модифицированные присадкой ионогенных групп пористые силикагели. [c.251]

    Для анализа молекул с молекулярной массой до 2000 применяют ионообменники с химически привитой фазой к силикагелю с размером частиц 5-10 мкм, а при препаративном разделении можно применять полимерные пористые сорбенты типа даррум ДА-Х8. При разделении крупных молекул с молекулярной массой 2000 применяют слабоосновный ионит, привитый на крупнопористый силикагель. Подробные сведения о наполнительных материалах приведены в разделе 5.6. [c.38]

    В рассматриваемых электродах слой жидкого ионообменника, состоящего из не смешивающегося с водой органического растворителя и растворенного в нем ионита, удерживается между анализируемым раствором и водным раствором постоянного состава, в который погружен внутренний электрод, с помощью пористого гидрофобного пластмассового диска. Последний препятствует вытеканию органической жидкости из резервуара, расположенного между двумя концентрическими трубками (рис. 6.5, с. 192). Внутреннюю трубку заполняют стандартным раствором определяемого иона и насыщают Ag l, чтобы при погружении в него серебряной проволоки образовался Ag/Ag l-электрод. Данный электрод обладает всеми преимуществами электродов с тонкими мембранами, и в то же время способен выдерживать давление более одной атмосферы без разрушения мембраны или вытеснения из нее органической жидкости. [c.202]

    Классические ионообменные полимерные сорбенты были заменены в нониой хроматографии покрытыми материалами, в которых поверхность иепористого стекла или полимерные частицы покрывали слоем ионообменника. Такие сорбенты имели в диаметре 30-40 мкм (пелликулярные ионообменники). Во втором варианте использовали пористый силикагель, аккуратно покрытый жидкими ионообменниками, по аналогии с адсорбционной хроматографией. [c.284]

    Ионообменники получают реакциями поликонденсации либо полимеризации. Методом поликоцденсации чаще получают полифункциональные ионообменники, методом полимеризации — монофункциональные. Поликонденсацию или полимеризацию необходимо провести так, чтобы полученные линейные цепи были достаточно разветвлены и связаны друг с другом мостикамю>. При получении катионообменников полимеризационного типа чаще в качестве спшвающего агента дпя создания межцепных (поперечных) связей применяют дивинилбензол (ДВБ). Пористость (сетчатость) ионообменника определяется степенью сшивания матрицы, которая характеризуется процентным содержанием ДВБ в полимерной смеси стиролов, используемых для синтеза. Процесс сшивания управляем, поэтому можно получать ионообменники нужной пористости. Процент ДВБ обычно составляет от 1 до 16. Наиболее часто используемые ионообменники содержат 4—9% ДВБ. [c.314]

    Большое распространение в ВЭЖХ получили объемно-пористые сорбенты с диаметром частиц 5—10 мкм. Поэтому в ионной ч>оматографии применяют объемно-пористые полистирольные ионообменники с dp -10 [c.316]

    По нерастворимому остову (матрице) определенным образом распределены ковалентно связанные функциональные группы, способные к диссоциации. Первые разработанные специально для ионо-обменной хроматографии твердые носители получали следующим образом на стеклянные шарики наносили путем полимеризации по-листирольную плен и в нее ввод1ши функциональные группы. В современных ионообменниках с пористым силикагелем ковалентно связаны (по типу щеток ) алкильные или арильные группы, в которые введены ионообменные группы. Чаще всего это сульфогруппы, реже карбоксильные группы (катионообменники) или четвертичные аммониевые группы (анионообменники). Обычные ионообменники меняют свой объем при изменении pH, концентрации ионов и температуры элюента. Прежде чем заполнять колонки, им надо дать набухнуть. [c.94]

    Кроме гелевых ионообменников различной пористости и ионообменников макросетчатого типа для решения спещ1альных хроматографических задач разработаны пленочные ионообменники с поверхностными порами, характеризующиеся гораздо более высокой хроматографической эффективностью, чем обычные смолы. Эти ионообменные смолы в виде тонкой оболочки наносят на инертное твердое тело (обычно стекло в форме сфер или спещ1ально обработанный диоксид кремния). [c.24]

    Основой современных ионообменников для ИХ являются силикагели и органические пористые полргмеры. Последние в настоящее время доминируют, т.к. более стабильны в щелочных средах при pH > 8. Силикагели устойчивы в пределах pH = 2-8. [c.328]

    Электроды на основе мембран с подвижными носителями имеют жидкие мембраны — раствор ионообменника или нейтрального переносчика в органическом растворителе, удерживаемый на пористом полим те (рис. 10.16). Органический растворитель влияет на свойства электрода. Так, если дпя растворения кальциевой соли эфира фосфорной кислоты [(ROj)jPOO]j a используют диоктилфенил-фосфонат, то электрод пригоден для определения ионов кальция в [c.139]

    Ионообменные колонки могут иметь самый различный размер, однако в аналитической практике обычно используют колонки диаметром 8—15 мм, высота слоя набухшей смолы в которых в 10—20 раз больше их диаметра. Слой смолы удерживается на пористом диске из спеченого стекла. Слой ионообменника в колонке, находящейся в рабочем состоянии, должен быть все время покрыт слоем жидкости, слой сорбента не должен содержать пузырьков воздуха. [c.486]


Смотреть страницы где упоминается термин Ионообменник пористость: [c.151]    [c.536]    [c.286]    [c.33]    [c.120]    [c.178]    [c.315]    [c.317]    [c.195]    [c.15]    [c.122]    [c.237]    [c.33]    [c.33]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменники



© 2025 chem21.info Реклама на сайте