Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент натяжения на поверхности раздела

    Капля бензола растекается по поверхности воды, а после взаимного насыщения двух жидкостей образует линзу. Объясните это явление. Рассчитайте начальные и конечные значения коэффициентов растекания бензола по воде, используя приведенные ниже значения поверхностных натяжений (в мН/м) для различных поверхностей раздела при 293 К  [c.37]


    Здесь К — коэффициент пропорциональности А — работа образования зародыша, складывающаяся из работы, затрачиваемой на образование поверхности раздела фаз af и работы образования массы зародыша АР-У Р и V—площадь поверхности и объем зародыша ДЯ = 2о/г — давление внутри зародыша, вызванное силой поверхностного натяжения. [c.241]

    В процессе вытеснения нефти поверхностно-активные вещества оказывают влияние на следующие взаимосвязанные факторы межфазное натяжение на границе нефть — вода и поверхностное натяжение на границах вода — порода и нефть — порода, обусловленное их адсорбцией на этих поверхностях раздела фаз. Кроме того, действие поверхностно-ак-тивных веществ проявляется в изменении избирательного смачивания поверхности породы водой и нефтью, разрыве и отмывании с поверхности пород пленки нефти, стабилизации дисперсии нефти в воде, приросте коэффициентов вытеснения нефти водной фазой при принудительном вытеснении и при капиллярной пропитке, в повышении относительных фазовых проницаемостей пористых сред. [c.67]

    Случай II. Условия те же, но примем равными коэффициенты молекулярной диффузии, т. е. = 1. В этом случае скорость подвода вещества к межфазной поверхности равна скорости отвода. Градиент концентраций с обеих сторон межфазной поверхности будет одинаковым по величине и противоположным по знаку, что приведет к нулевому градиенту концентрации на поверхности раздела фаз. Соответственно не будет градиента межфазного натяжения и первоначальное возмущение не будет усиливаться, а наоборот постепенно исчезнет за счет одних только сил трения. Система станет стабильной. [c.211]

    Впечатляющий прогресс на грани тысячелетий в области миниатюризации и повышения быстродействия электронных микросхем не в последнюю очередь обязан грамотному использованию капиллярных свойств материалов при изготовлении микросхем, основным конструктивным элементом которых являются тонкие пленки. В ряду проблем, решение которых определяет возможности миниатюризации изделий микроэлектроники, находится и проблема термодинамической устойчивости тонких пленок. Щукин и Ребиндер [37] нашли условие, при котором возможно самопроизвольное диспергирование вещества (жидкости) в результате тепловых флуктуаций формы межфазной границы. В обобщенном виде оно имеет вид <зА < кТ, где а — межфазное натяжение, А — приращение площади межфазной границы при ее деформировании, р — числовой коэффициент порядка 10, Л — константа Больцмана и Т — температура. Флуктуации поверхности можно представить как образование на ней лунок или выступов, имеющих форму шарового сегмента радиусом К и глубиной (высотой) к. Такую форму имеет, например, капля жидкости на твердой поверхности (см. рис. 3.14). При прогибе поверхности раздела фаз на глубину к приращение А площади поверхности равно пк независимо от радиуса прогиба К, в том числе и при образовании капли радиусом К = к. При нормальной температуре и натяжении 0,1 Дж/ м вполне вероятно возникновение флуктуационных лунок (или выступов) глубиной 10 м (это размер одной молекулы), а при изменении натяжения или температуры глубина флуктуационных лунок и выступов растет пропорционально отношению 77а. Одно из следствий этой закономерности — самопроизвольное диспергирование монолитных веществ (жидкостей) при достаточно низкой величине межфазного натяжения и образование термодинамически устойчивых коллоидных растворов. Термодинамическую устойчивость можно считать следствием того, что приращение поверхностной энергии при диспергировании вещества компенсируется уменьшением свободной энергии системы за счет увеличения энтропии при уве- [c.750]


    По мнению М. В. Островского [114], на поверхности раздела фаз существуют участки с равновесным и неравновесным поверхностным натяжением , а разность между последними является движущей силой, поддерживающей существование конвективных ячеек. Положение о существовании участков поверхности, где отсутствует равновесие между фазами, весьма спорно. Возможно, для некоторых физико-химических систем поверхностное сопротивление играет определенную роль. Анализ предложенного им метода определения поверхностной концентрации показал, что исходные положения метода не правильны, в результате чего получен противоречащий опытным данным результат соотношение коэффициентов массоотдачи для каждой из фаз определяется только соотношением объемов фаз и никоим образом не зависит от гидродинамических условий. Причина ошибки заключается в следующем. При рассмотрении нестационарного процесса массопередачи не учитывается, что скорость изменения концентрации в пограничном слое намного больше скорости изменения концентрации в объеме. [c.96]

    Чтобы рассчитать натяжение на поверхности раздела, замеренная таким образом сила корректируется эмпирически определенным коэффициентом, который зависит от применяемой силы, плотности воды и масла, и размеров кольца. [c.475]

    Рассмотрим систему, в которой < 0. В такой системе в основной массе жидкости поверхностное натяжение ниже, чем у границы раздела. Вихрь, поступивший к поверхности, переносит с собою жидкость, имеющую более высокое значение содержания летучего х и более низкую температуру. Однако изменение концентрации более существенно влияет на поверхностное натяжение, нежели изменение температуры, поэтому можно ожидать, что жидкость, поступившая изнутри, должна обладать более низким поверхностным натяжением, чем та, которую она заменяет. Локальное изменение концентраций будет, следовательно, приводить к небалансу сил поверхностного натяжения. В результате этого жидкость с более низким поверхностным натяжением будет рассеиваться у поверхности раздела и вызывать конвективные токи, которые усилят нормальный механизм обновления поверхности и увеличат коэффициент массопередачи. [c.11]

    Как известно, силы поверхностного натяжения жидкой фазы зависят от величины коэффициента поверхностного натяжения, который на поверхности раздела фаз можно рассматривать в виде функции взаимодействия силовых полей молекул жидкости и молекул граничащей с ней среды. Величиной такого взаимодействия силовых полей молекул жидкости и молекул материала стенок трубы, ограничивающих поток смеси, определяется направление действия сил поверхностного натяжения у стенок трубы и свойства смачиваемости материала этих стенок. Как показывают наблюдения, свойства смачиваемости материала стенок трубы или нанравления действия сил поверхностного натяжения на границах потока существенно влияют на форму движения и структуру потока. [c.40]

    В природных дисперсных материалах, в том числе и торфе, перенос влаги, как правило, происходит в неизотермических условиях. При этом процессы термовлагообмена в капиллярно-по-ристых системах протекают наиболее интенсивно, когда они находятся в трехфазном состоянии [218], отвечающем наибольшей подвижности влаги под действием градиентов температуры. При низком влагосодержании материала (11- 0) термическая подвижность влаги мала вследствие высокой энергии ее связи с твердой фазой. При двухфазном состоянии торфа в нем возможна лишь термическая циркуляция массы без ее перераспределения Б объеме йи 1йТ = 0). Кроме того, с увеличением и уменьшается поверхность раздела жидкость — газ, определяющая тер-мовлагоперенос под действием градиента поверхностного натяжения. Следовательно, наибольшая термическая подвижность дисперсионной среды соответствует такому остоянию материала, когда его поры не полностью заполнены влагой и в достаточной мере развита поверхность-раздела жидкость — газ [231]. Влага порового пространства в данном случае разделена короткими пленочными участками, от термической подвижности которых и зависят значения термоградиентного коэффициента б. [c.76]

    Обычно мицеллярный раствор используют в форме оторочки. При заводнении пластов с оторочкой мицеллярного раствора возможно увели-ченпе и коэффициента вытеснения, и коэффициента охвата. Это объясняется небольшим межфазным натяжением на поверхности раздела между раствором и вытесняемой нефтью, а также повышенной вязкостью вытесняющей жидкости. [c.191]

    Данные межфазного натяжения характеризуют эффективность диспергирования в процессе образования эмульсии. Эти данные используют для вычисления коэффициентов растекания, краевых углов, вандерваальсовых сил притяжения между шариками и взаимодействия между поверхностями раздела (Фоукес, 1964). [c.165]


    Исследованы [46] температурные зависимости поверхностного натяжения веществ, молекулы которых ориентируются на поверхности раздела фаз, например, нормального ряда спиртов. Результаты аналогичны полученным с парафиновыми углеводородами. Общий тслЧ-пературный коэффициент равен 0,1 дин см-град), а но изобарам 0,03. Следовательно, при изменении температуры происходит незначительная дезориентация поверхностного слоя, что объясняется с помощью формулы (15) в случае Д/ д КТ. [c.438]

    Таким образом, скорость изменения дисперсности системы определяется растворимостью вещества дисперсной фазы в дисперсионной среде, коэффициентом диффузии его через дисперсионную среду и поверхностным натяжением границы раздела фаз. Коэффициент диффузии О, в свою очередь, существенно зависит от фазового состояния дисперсионной срёды (очень малые значения характерны для твердых сред), в меньшей степени — от размеров молекул дисперсной фазы и, как правило, не может быть значительно изменен в объеме дисперсионной среды введением каких-либо добавок в систему. Вместе с тем наличие адсорбционных слоев на поверхности частиц (особенно в концентрированных системах, где эти слои составляют основную часть прослоек между частицами) может заметно тормозить процесс изотермической перегонки. Это связано с пониженной проницаемостью таких слоев для молекул дисперсной фазы как за счет снижения коэффи-щ ента диффузии в слое, так и в результате снижения в нем растворимости вещества. Снижение скорости роста частиц при изотермической перегонке может достигаться также вследствие снижения поверхностного натяжения в пределе — при переходе к лиофильным коллоидным системам — процесс перегонки вообще прекращается. Растворимость вещества дисперсной фазы в дисперсионной среде слабо зависит от введения добавок, но сильно меняется в зависимости от природы этих фаз. Дисперсные фазы большинства устойчивых к изотермической перегонке лиофобных систем состоят из веществ, практически нерастворимых в дисперсионной среде. [c.269]

    Оба явления, описанные Томсоном, одинаковы в основе — местное уменьшение поверхностного натяжения за счет введения спирта вызывает направленное от центра движение жидкости с меньшим поверхностным натяжением. Однако с точки зрения инженерной химической технологии эти эффекты различны. В первом случае движение на поверхности раздела фаз и в слоях, к ней прилегаюш,их, изменяет сопротивление массопередачи и, следовательно, значение коэффициента массопередачи, в то время как во втором случае на скорость массопередачи будет главным образом оказывать влияние изменение величины межфазной поверхности. [c.206]

    Так как межфазное натяжение является функцией концентрации растворенного вегцества на новерхности раздела фаз, следует рассмо- треть зависимость этой концентрации от ряда переменных. На рис. 6-1 концентрация раствора на нижней стороне межфазной поверхности будет в общем уменьшаться, а на верхней стороне — возрастать в направлении от а к б . Таким образом прилегающие к поверх- ности слои нижней фазы будут иметь отрицательный градиент концентраций, а соответствующие слои верхней фазы — положительный. Так как концентрация вещества на поверхности раздела фаз определяется концентрациями в фазах ио обе стороны от нее, градиент концентраций в межфазной поверхности также будет результатом градиентов концентраций вещества в фазах по обе стороны от поверхности раздела. Эти градиенты зависят в первую очередь от того, насколько быстро вещество подводится из какой-либо фазы к поверх- ности раздела и отводится от нее в результате молекулярной диффузии, т. е. зависят от ячеистой конвекции. Следовательно, направление градиента концентрации на межфазной поверхности зависит от соотношения коэффициентов молекулярной диффузии, (используя терминологию Стерлинга и Скривена оно обозначается г-) и соотноше-ния коэффициентов кинематической вязкости (иереноса момента), обозначаемого е-. Действительные значения /) и V хотя и не влияют на направление градиента, тем не менее важны для определения его величины. [c.210]

    Позднее Линде использовал споры грибка (ustilago zeal) для Того, чтобы сделать потоки видимыми при боковом просмотре [39]. Циркуляционные, четко ограниченные ячейки были ясно видны в системе жидкость — газ, например при десорбции этанола в воздух из 40%-ной смеси этанол — вода (при десорбции массоперенос всегда происходит из фазы с более высокой вязкостью и меньшим коэффициентом диффузии), а также в системе жидкость — жидкость (фото 6.6). Разница в кривизне поверхности раздела фаз указывает на наличие градиента межфазного натяжения. [c.232]

    Процесс сложнее, чем в рассмотренных выше задачах диффузионной кинетики. Кроме скоростей реакции и диффузии,на него влияют коэффициенты распределения веществ между фазами, адсорбция их на поверхности раздела, а при наличии потока или перемешивания — также и поверхностное междуфазовое натяжение, от которого зависит деформация поверхности раздела (при сильном перемешивании она приводит к дроблению фаз, и процесс становится микрогетерогенным). Ряд примеров реакций в несмешивающихся жидких системах исследовал Абрамзон с сотр. [38]. Они ограничились установлением реакционной фазы и выделением кинетической области, но не стремились оценить глубину проникновения и разграничить теоретически области объемной и поверхностной реакций. В процессах рассматриваемого рода наблюдалась зависимость скорости реакции от концентрации типа кривых рис. 16. В этих случаях вещество, от которого зависш скорость реакции, является, видимо, лимитирующим, и реакция должна происходить в адсорбционном слое. Такие реакции на поверхности раздела двух жидкостей отличаются от рассмотренного выше случая нескольких диффундирующих веществ только тем, что исходные вещества диффундируют из разных фаз. В случае же объемной реакции (в том числе и во внутренней диффузионной области) скорость реакции должна зависеть от концентраций обоих веществ. [c.102]

    Девисом и Восе (1965) и Шелудко и Тиссен (1966). Большинство авторов нашли, что для данного ПАВ имеется максимум затухания, величина которого превышает предсказанную Левичем для твердых нерастворимых монослоев. Основная часть энергии затухания рассеивается микроциркуляционными токами, возникающими в жидкости ниже поверхности раздела под действием градиента новерхностного натяжения. Ван ден Темпель и ван ден Рит успешно разрешили эту проблему для случая, когда влиянием вязкости поверхностного слоя можно пренебречь. Измерения коэффициента затухания на межфазной поверхности масло — вода не были проведены, но можно с уверенностью предположить, что они основаны на тех же принципах, что и для поверхности раздела воздух — вода. [c.88]

    Явление гидродинамической неустойчивости поверхности контакта фаз в настоящее время еще изучено мало [79—81]. При экспериментальном изучении кинетики массопередачи гидродинами- ческая неустойчивость поверхности контакта фаз и межфазовая турбулентность наблюдались в системе кислород — азот [82] когда кислород переходил в жидкую фазу, коэффициенты массопередачи были больше, чем при переходе его в газ, так как в первом случае происходило снижение поверхностного натяжения жидкости у поверхности раздела фаз, а во втором — увеличение ее. Аналогичная зависимость эффективности массопередачи была получена в работе [83]. [c.106]

    В рассматриваемом методе можно использовать и другие слабые р-излучатели, например С и Н. Особенно удобно использовать тритие-вую ( Н) метку, поскольку 3-излучение трития характеризуется такой низкой энергией, что поиравка на радиоактивность объема раствора очень мала. Таджима и др. [67] использовали тритиевую метку для измерения адсорбции додецилсульфата натрия на поверхности раздела раствор — воздух. Как показывает рис. П-13, полученные результаты очень хорошо согласуются со значениями, рассчитанными по данным измерения поверхностного натяжения теперь уже по уравнению (П-107) (с учетом коэффициента активности). Таким образом, в данном случае поверхностно-активной является соль, а не продукты гидролиза. Более позднее исследование [68] с использованием 0,1 М хлористого натрия в качестве сглал ивающего электролита, как и ожидалось, дало резуль- [c.70]

    Ранее отмечалось, что равновесные коэффициенты растекания обычно имеют отри-цательно значение. Поэтому при нанесении на жидкость А избыточного количестаа вещества В в равновесных условиях гиббсовский монослон сосуществует с объемной фазой (или линзой, если В — жидкость), в которой остается избыток В. Однако, если А — твердое тело (см. гл. УП), на поверхности нередко образуются стабильные толстые или дуплексные пленки другими словами, краевой угол мел4ду жидкостью н твердым телом равен нулю. Еще одно исключение — стабильное растекание с образованием дуплексных пленок в присутствии на поверхности раздела масло — вода третьего сильно адсорбирующегося компонента. Так, олеат натрия даже в очень низкой концентрации уменьшает межфазное натяжение между парафиновым маслом и водой с 41 до 7,2 дн/см. Лэнгмюр показал [25], что на поверхности раздела раствора поверх-ностно-активного вещества, образующего гиббсовский монослой типа двумерного газа, масляные пленки растекаются с образованием дуплексных пленок (см. разд. И1-6Б). [c.94]

    Приведенные значения а свидетельствуют о том, что в кипящем слое имеется поверхностное натяжение. Коэффициент поверхностного натяжения оказывается ни чтожно малым для мелких частиц и достаточно ощутимым для крупных (для сравнения напомним, что на поверхности раздела вода — воздух а=72 эрг1см ). [c.46]

    Теоретические и экспериментальные работы по затуханию волн были опубликованы Левичем (1941), Хансеном и Манном (1963), Люкассеном и Хансеном (1966), ван ден Темпелем и вап ден Ритом (1966), Девисом и Восе (1965) и Шелудко и Тиссен (1966). Большинство авторов нашли, что для дантюго ПАВ имеется максимум затухания, величина которого превышает предсказанную Левичем для твердых нерастворимых монослоев. Основная часть энергии затухания рассеивается микроциркуляционными токами, возникающими в жидкости ниже поверхности раздела под действием градиента поверхностного натяжения. Ван ден Темпель и ван ден Рит успешно разрешили эту проблему для случая, когда влиянием вязкости поверхностного слоя можно пренебречь. Измерения коэффициента затухания на межфазной поверхности масло — вода не были проведены, но можно с уверенностью предположить, что они основаны на тех же принципах, что и для поверхности раздела воздух — вода. [c.88]


Смотреть страницы где упоминается термин Коэффициент натяжения на поверхности раздела: [c.254]    [c.146]    [c.88]    [c.188]    [c.36]    [c.326]    [c.15]    [c.15]    [c.76]    [c.106]    [c.336]    [c.207]    [c.287]    [c.6]    [c.20]    [c.154]    [c.159]    [c.160]    [c.163]    [c.204]    [c.498]    [c.9]    [c.9]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Натяжение на поверхности раздела

Поверхность натяжения

Поверхность раздела фаз

Поверхность разделяющая



© 2025 chem21.info Реклама на сайте