Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсность на растворимость веществ

    Коллоидная химия имеет большое теоретическое и практическое значение. По словам Ребиндера распространенность дисперсных систем в природе очевидна хотя бы из того, что далеко не все вещества практически растворимы, чтобы образовать молекулярные растворы, в то время как любое растворимое вещество может быть переведено в нерастворимую форму и способно образовать дисперсную систему. Поэтому коллоидная химия играет важную роль в современном научно-техническом прогрессе. Практически невозможно назвать отрасль промышленности, в которой не было бы коллоидно-химических процессов (пищевая промышленность производство искусственного шелка крашение тканей кожевенная промышленность сельское хозяйство почвоведение медицина и др.) [c.269]


    Методы конденсации. 1. Метод замены растворителя заключается в том, что истинный раствор вещества добавляется к жидкости, смешивающейся с растворителем, но в которой само вещество мало растворимо и выделяется в виде высокодисперсной фазы. 2. Метод конденсации из паров основан на одновременной конденсации паров диспергируемого вещества и растворителя на холодной поверхности. 3. Химические методы конденсации основаны на переводе растворенных веществ в нерастворимое состояние при помощи различных химических реакций (восстановление, гидролиз, двойной обмен и др.) с последующей агрегацией и рекристаллизацией нерастворимых частиц, образующих дисперсную фазу. Образование новой фазы происходит из пересыщенного раствора в результате роста частиц на центрах или зародышах кристаллизации. Стабилизаторами являются растворимые вещества, возникающие в результате химической реакции. [c.262]

    Из соотношения (VI. 5) следует, что перенос вещества (поток на единицу площади в соответствии с законом Фика) зависит как от коэффициента диффузии, входящего в уравнение Фика и составляющего для жидких сред приблизительно 10- м7с, так и от размеров частиц, растворимости вещества дисперсной фазы, поверхностного [c.277]

    Обязательным условием образования дисперсных систем является малая взаимная растворимость веществ, образующих систему. [c.108]

    На растворимость и химическую активность компонентов смеси большое влияние оказывает также степень дисперсности исходных веществ (см. гл. V, 1). [c.109]

    Дана схема противоточной четырехступенчатой промывки на ленточном фильтре, причем на последнюю ступень поступает чистая вода, а фильтрат с первой ступени выводится из установки после каждой ступени фильтрат поступает в соответствующий промежуточный сосуд [253], Приведен расчет противоточной промывки, в соответствии с которым общее количество промывной жидкости, используемое на данной ступени, распределяется на п равных частей, последовательно контактирующих с осадком в результате каждого контакта в осадке и промывной жидкости устанавливается одинаковая концентрация растворимого вещества согласно условиям идеального перемешивания. Получены уравнения для определения концентрации растворимого вещества в осадке при известных значениях отнощения объема промывной жидкости к объему осадка, числа ступеней промывки и п величина п зависит, в частности, от толщины, пористости и дисперсности осадка, конструкции фильтра и находится экспериментально. [c.228]


    Концентрацию хромат-ионов следует устанавливать таким образом, чтобы красно-коричневое окрашивание появлялось при достижении показателя титрования. Для индикации конечной точки титрования в методах осаждения используют также адсорбционные индикаторы. По своему принципу действия они отличаются от описанных выше одно- и двухцветных индикаторных систем, поскольку изменение окраски происходит не в гомогенной среде, а на поверхности коллоидно-дисперсной фазы. Мало растворимые вещества обладают свойством преимущественной адсорбции имеющихся в растворе избыточных одноименных ионов. Если осадок образуется во время титрования, то электрический заряд его поверхности при т-< 1 определяет титруемое вещество, а при т > 1 — титрант. Вследствие притяжения тех или иных противоположно заряженных ионов образуется двойной электрический [c.72]

    Необходимое условие образования дисперсной системы — ограниченная растворимость вещества дисперсной фазы в дисперсионной среде. Так, системы Г/Г обычно не фигурируют в классификации вследствие неограниченной взаимной растворимости газов. [c.11]

    Химические реакции с образованием трудно растворимых веществ в дисперсионной среде. Такими реакциями могут быть процессы гидролиза, окисления — восстановления, выпадения осадков и т. д. Так можно получать высокодисперсные системы, однородные по степени дисперсности 0= 1й). [c.220]

    Эта величина может рассматриваться как коллоидная растворимость вещества дисперсной фазы в виде частиц радиуса г общая коллоидная растворимость может быть определена суммированием выражений вида (IV—16) для частиц всех возможных размеров. Поскольку коллоидная растворимость является экспоненциальной функцией по- [c.118]

    ВЛИЯНИЕ РАСТВОРИМОСТИ ВЕЩЕСТВА ДИСПЕРСНОЙ ФАЗЫ В ДИСПЕРСИОННОЙ СРЕДЕ И ТЕМПЕРАТУРЫ НА ИНТЕНСИВНОСТЬ РЕКРИСТАЛЛИЗАЦИИ [c.164]

    Одним из методов синтеза коллоидных систем является конденсационный. Образование коллоидных систем в результате конденсации — это процесс кристаллизации, а образовавшиеся частицы представляют собой мельчайшие кристаллики [3]. В зависимости 01 величины растворимости вещества дисперсной фазы в дисперсионной среде в результате конденсационных процессов могут образоваться дисперсные системы от высокодисперсных золей до грубодисперсных суспензий. Как известно [1—4], суспензии имеют большое практическое значение. Рассмотрим несколько примеров практического применения процесса рекристаллизации, происходящего в условиях периодического колебания температуры или концентрации дисперсионной среды. [c.187]

    Общие условия получения лиофобных золей — нерастворимость или очень малая растворимость вещества дисперсной фазы в дисперсионной среде и наличие в среде веществ, которые способны стабилизировать частицы дисперсной фазы — стабилизаторов. [c.80]

    Полученный результат, а также результат исследования влияния дисперсности на интенсивность рекристаллизации дают возможность объяснить наблюдающийся на практике факт, когда хорошо растворимые вещества не могут удерживаться в высокодисперсном состоянии [1 , так как малейшие флуктуационные колебания температуры, неизбежно существующие в реальных дисперсных системах, приводят к их укрупнению за счет рекристаллизации по указанному механизму и укрупнение тем значительнее, чем выше степень дисперсности твердой фазы и чем больше ее растворимость в дисперсионной среде. [c.167]

    Метод замены растворителя. Метод основан на изменении состава и свойств дисперсионной среды. Если, например, спиртовой раствор серы, фосфора или канифоли влить в воду, вследствие понижения растворимости вещества в новом растворителе раствор становится пересыщенным и часть вещества конденсируется, образуя частицы дисперсной фазы. [c.83]

    Экспериментальное исследование адсорбции ПО иона сводится к нахождению разности Ас = Ср - Са его рецептурной (расчетной) Ср и фактической (аналитической) Са концентрации в растворе. Предполагается, что последняя может быть определена с помощью тех или иных методов анализа раствора, а разница Дс обусловлена адсорбцией ПО иона на поверхности частиц дисперсной фазы. Действительной причиной уменьшения концентрации может быть уменьшение растворимости вещества дисперсной фазы и выведение ПО ионов из раствора путем образования дополнительного количества вещества твердой фазы. [c.609]

    Рекристаллизация (или в общем случае переконденсация), обусловленная различным влиянием размера частиц дисперсной фазы на их скорость роста и растворения (испарения), происходит и в других дисперсных системах с разным агрегатным состоянием вещества дисперсной фазы и дисперсионной среды, если имеют место следующие условия 1) ограниченная растворимость вещества дисперсной фазы в дисперсионной среде 2) полидисперсность частиц дисперсной фазы 3) периодическое колебание температуры и концентрации дисперсионной среды. Такой вывод нами сделан на основании того, что все дисперсные системы, независимо от агрегатного состояния вещества дисперсной фазы и дисперсионной среды, обладают общим свойством — избытком свободной поверхностной энергии, благодаря чему любая дисперсная система стремится к умень-щению дисперсности по любому возможному, в том числе и по колебательному, механизму. [c.169]


    Предполагая, что процесс переконденсации в указанных выше условиях происходит по механизму, обусловленному асимметричным влиянием размера частиц дисперсной фазы на нх скорость роста и растворения, можно объяснить такой ход изменения удельной поверхности адсорбентов и катализаторов при их гидротермальной обработке. Для протекания процесса переконденсации по этому механизму есть все условия ограниченная растворимость вещества дисперсной фазы в воде, полидисперсность частиц и периодическое колебание температуры. [c.178]

    Разумеется небольшая растворимость вещества дисперсной фазы в дисперсионной среде, в соответствии с рассматриваемым механизмом, должна привести к незначительной интенсивности переконденсации в эмульсиях. Однако здесь речь идет пока о принципиальной возможности протекания процесса переконденсации в эмульсиях по рассматриваемому механизму. Приведенные косвенные данные свидетельствуют в пользу этой возможности. Что касается практического значения механизма переконденсации в эмульсиях, то из-за малой растворимости вещества дисперсной фазы в дисперсионной среде его роль может сказаться лишь при длительном хранении (или применении) эмульсий. [c.184]

    Выделение систем с определенным размером частиц в особый класс коллоидных систем не является чисто формальным. Высокая дисперсность придает веществам новые качественные признаки повышенную реакционную способность и растворимость, интенсивность окраски, светорассеяние и т. п. Резкое изменение свойств вещества с повышением дисперсности связано с быстрым увеличением суммарной поверхности раздела между частицами и средой. Большая поверхность раздела создает в коллоидных системах большой запас поверхностной энергии Гиббса, который делает коллоидные системы термодинамически неустойчивыми, чрезвычайно реакционноспособными. В этих системах легко протекают самопроизвольные процессы, приводящие к снижению запаса поверхностной энергии адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы — гегетрогенность и [c.365]

    Опыты с различными веществами показали, что природа вещества дисперсной фазы не влияет на относительную скорость роста и растворения частиц. Природа растворителя и растворенных примесей воздействует на интенсивность рекристаллизации через влияние на растворимость вещества дисперсной фазы в дисперсионной среде. [c.202]

    Анализ методов, применяемых на практике для очистки воды, показывает, что они определяются фазово-дисперсным состоянием примесей. Индивидуальная химическая природа веществ, загрязняющих воду, имеет значение лишь в той степени, в какой она допускает изменение этого состояния под влиянием различных факторов. Основываясь на этом, все примеси воды были разделены на четыре группы, две из которых образуют с водой гетерогенные системы, две — гомогенные, т. е. истинные растворы. Гетерогенные системы образуются при загрязнении воды нерастворимыми или малорастворимыми соединениями, гомогенные — при попадании в воду различных растворимых веществ. [c.21]

    Укрупнение частиц может происходить по нескольким причинам. Как известно, мелкие капельки и кристаллики имеют повышенное давление пара и соответственно повышенную растворимость. Увеличение давления пара или растворимости связано с линейными размерами частиц уравнением Гиббса—Томсона. Согласно этому уравнению, эффект должен быть заметен даже для частиц коллоидных размеров, поэтому в гетерогенной системе с достаточно высокой степенью дисперсности большие частицы растут за счет меньших. Так как скорость этого процесса определяется скоростью диффузии растворенного вещества от одной частицы к другой, то он наблюдается только в золях достаточно растворимых веществ. Известно, что Ag l и Ва304, которые сравнительно хорошо растворимы в воде, образуют не очень устойчивые золи. При добавлении спирта растворимость Ва804 понижается, а устойчивость золя повышается. Процессы рекристаллизационного укрупнения играют важную роль в весовом анализе и во многих других случаях. Этим же процессам приписывают, например, рост частиц галогенидов серебра при приготовлении фотоэмульсий.  [c.192]

    Синерезис может протекать как самопроизвольно, так и под влиянием веществ, понижающих растворимость вещества дисперсной фазы, например электролитов. Так, студни желатина синерги-руют при добавлении к ним эфира, студни геранина (органический краситель) синергируют при добавлении Na l и т. д. Наибольший интерес представляет самопроизвольный синерезис эластичных студней, являющийся не чем иным, как процессом их старения — автокоагуляции. [c.397]

    Подобные системы, строго говоря, лиофобные, в которых при малой растворимости вещества дисперсной фазы в дисперсионной среде мала и энергия взаимодействия частиц в контакте и , очень близки по свойствам к истинно лиофильным коллоидным системам и могут быть названы псевдолиофильными . Анализ влияния различных факторов, в частности адсорбции ПАВ, на взаимодействие коллоидных частиц свободнодисперсных систем в контакте служит теоретической основой управления устойчивостью лиофобных дисперсных систем. [c.243]

    Для высокоустойчивых дисперсных сггстем, в которых процессы агрегирования частиц дисперсной фазы и последующей коалесценции идут с очень малыми скоростями, и особенно при значительной растворимости вещества дисперсной фазы в дисперсионной среде, падение дисперсности, т, е. разрушение системы, может быть обусловлено диффузионным переносом вещества дисперсной фазы от малых частиц к более крупным. Эти процессы широко распространены в природе, а также используются в ряде областей техники они могут протекать в самых различных дисперсных системах лиозолях, суспензиях, эмульсиях, пенах, аэрозолях, системах с твердой дисперсионной средой, в том числе сплавах и горных породах. Закономерности процессов изотермической перегонки в различных системах близки, что обусловлено одинаковым характером движущих сил процессов — наличием градиентов химических потенциалов, связанных с различием кривизны поверхности частиц разного размера, — и механизма их протекания — диффузионного переноса вещества дисперсной фазы. [c.267]

    Таким образом, скорость изменения дисперсности системы определяется растворимостью вещества дисперсной фазы в дисперсионной среде, коэффициентом диффузии его через дисперсионную среду и поверхностным натяжением границы раздела фаз. Коэффициент диффузии О, в свою очередь, существенно зависит от фазового состояния дисперсионной срёды (очень малые значения характерны для твердых сред), в меньшей степени — от размеров молекул дисперсной фазы и, как правило, не может быть значительно изменен в объеме дисперсионной среды введением каких-либо добавок в систему. Вместе с тем наличие адсорбционных слоев на поверхности частиц (особенно в концентрированных системах, где эти слои составляют основную часть прослоек между частицами) может заметно тормозить процесс изотермической перегонки. Это связано с пониженной проницаемостью таких слоев для молекул дисперсной фазы как за счет снижения коэффи-щ ента диффузии в слое, так и в результате снижения в нем растворимости вещества. Снижение скорости роста частиц при изотермической перегонке может достигаться также вследствие снижения поверхностного натяжения в пределе — при переходе к лиофильным коллоидным системам — процесс перегонки вообще прекращается. Растворимость вещества дисперсной фазы в дисперсионной среде слабо зависит от введения добавок, но сильно меняется в зависимости от природы этих фаз. Дисперсные фазы большинства устойчивых к изотермической перегонке лиофобных систем состоят из веществ, практически нерастворимых в дисперсионной среде. [c.269]

    Подобные системы, строго говоря лиофобные, в которых при малой растворимости вещества дисперсной фазы в днсперсионной среде мала и энергия взаимодействия частиц в контакте близки по свойствам к истинно лиофильным коллоид- [c.290]

    Связь между количеством растворимого вещества в дисперсной и сплошной фазах определяется материальным балансом. Для ие-рнодического процесса (рис. 2.4, а) с интенсивным перемешиванием обеих фаз количество растворившегося вещества повышает концентрацию в жидкой фазе  [c.86]

    Уменьшение растворимости при введении электролита, имеющего общий ион с дисперсной фазой, вытекает из условия равновесия твердой фазы и ее насыщенного раствора. Это условие выражается в равенстве произведения фактических концентраций ai и Са2 обоих ПО ионов постоянной величине — произведению растворимости вещества ПР. В случае симметричньгх солей типа Agi, AIPO4 и других. ПР = f. Расчетные же [c.609]

    А. Е. Орадовской была проведена обширная серия опытов по растворению и выносу из слоя дисперсно распределенного Са 804 ЗНзО в песке. Была показана качественная и удовлетворительная количественная сходимость опытных п теоретически рассчитанных по уравнениям (2.85), (2.86) выходных кривых. Однако наилучшее совпадение наблюдалось при сопоставлении экспериментальных и теоретических значений [уравнение (2.88)] скорости Л/(11. Н. Н. Веригиным была показана правомерность уравнения (2.88) для двух различных способов локализации растворимого вещества — новерх-ностно-пленочного (на инертных частицах) и дисперспо-рассеян-ного [53]. Г. А. Аксельруд показал, что результат (2.88) остается справедливым при любом способе размещения растворимого вещества относительно частиц инертного материала, в том числе и тогда, когда оно располагается внутри инертных пористых частиц [2 14, с. 131], — см. также раздел 2.4. [c.96]

    Кристализация в однородных дисперсных системах. Когда разработана математическая модель процесса, проведена ее идентификация и показана адекватность, то становится воз.можным оптимизировать технологические режимы работы аппарата с целью получения максимальной производительности при заданном гранулометрическом составе кристаллического продукта. В качестве примера рассмотрим кристаллизатор с циркулирующей суспензией и отстойной зоной для вывода осветленного раствора. Такие кристаллизаторы могут работать в нескольких режимах с накоплением твердой фазы (в аппарат подается питающий раствор и отводится обедненный раствор через отстойную зону) с непрерывной выгрузкой (в аппарат непрерывно подается питающий раствор и непрерывно отводится продукционная суспензия) с циклической выгрузкой (питающий раствор подается непрерывно, обедненный отводится через отстойную зону в течение периода накопления твердой фазы Тк, продукционная суспензия в течение периода выгрузки Тв отводится из аппарата). Выбор режима работы кристаллизатора определяется в основном растворимостью веществ и скоростью роста кристаллов, а также требованиями к их качеству. [c.206]

    Пример 2.2. Рассматривается непрерывное экстрагирование растворимого вещества нз пористого дисперсного материала при расходах дисперсной фазы Кт = 0,585-10 м /(м -с) и жидкого экстрагента = 0,01 м Дм -с) порозиость слоя движущегося материала е = 0,45. Концентрация насыщения С = 45 кг/м объемная доля заполнения пористого материала растворяемым твердым веществом ви = 0,38 плотность твердого целевого компонента Рг = 1,8-10 кг/м . Характеристическая функция процесса б (у) находится по исходной кинетической кривой f(т). Экспериментальная кривая изменения концентрации целевого компонента в растворителе при периодической обработке частиц материала в условиях полного перемешиватшя считается известной (рис. 2.12). При получении кривой f(т) отнощение исходной массы целевого компонента к объему растворителя было равно 43,5 кг/м . [c.130]

    Между растворимостью вещества или компонента, удаляемого методом эмульсионного разделения, и его эмульгирующей способностью существует некоторая зависимость при этом следует различать молекулярную или коллоидную растворимость удаляемого компонента, а также растворимость компонента в непрерывной или в дисперсной фазе эмульси.и. Если вещество, которое требуется выделить, является активнь[м эмульгатором, то оно обычно растворимо и содержится в непрерывной фазе (дисперсионной среде). Имеются вполне убедительные доказательства, что в момент, когда происходит эмульгирование, активный эмульгатор может находиться-в молекулярно- или коллоиднодисперсном состоянии или даже в виде макроскопических частиц. Правило о растворимости эмульгатора в дисперсионной среде выдерживается для большинства, но 11е для всех эмульгаторов. В литературе указывалось [33], что не всякое вещество, растворимое как в углеводороде (например, бензоле), так и в воде и вызывающее отчетливое снижение поверхностного натяжения на границе раздела фаз, обязательно является хорошим эмульгатором. Например, ацетон растворим в обеих этих жидкостях и все же он не ( бла-дает эмульгирующей способностью не является эмульгатором и метилэтилкетон. Однако, как указывалось выше в разделах, посвященных пенному разделению, между растворимостью и поверхностной активностью существует несомненная связь. Поэтому об эмульгирующей способности поверхностно-активного вещества все же можно судить на основании его растворимости в водной или углеводородной фазе, используемой для приготовления эмульсии. [c.142]


Смотреть страницы где упоминается термин Дисперсность на растворимость веществ: [c.266]    [c.106]    [c.9]    [c.243]    [c.141]    [c.290]    [c.326]    [c.114]    [c.165]    [c.203]    [c.632]    [c.286]   
Курс коллоидной химии Поверхностные явления и дисперсные системы (1989) -- [ c.112 ]




ПОИСК







© 2025 chem21.info Реклама на сайте