Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилентерефталат прочность

    Для сварки пленок полиэтилентерефталата используют диизоцианаты или органические перекиси [207], наносимые на соединяемые поверхности из раствора в кетоне, в смеси с раствором низкомолекулярного полиэфира в метиленхлориде [180, 185] или в смеси с окси-производными бензола [180]. Химической сваркой соединяют как тонкие (2 мкм), так и толстые ( 250 мкм) пленки полиэтилентерефталата. Прочность их соединения при этом близка к прочности основного материала, а стойкость к действию растворителей и теплостойкость выше, чем для соединений, полученных диффузионной сваркой. [c.169]


    Пленка из полиэтилентерефталата, выпускаемая в СССР под названием лавсан, с США — майлар, в Англии — терилен, обладает высокой механической прочностью и химической стойкостью в широком диапазоне температур и хорошими диэлектрическими свойствами. Она применяется в качестве изоляционного материала, основы фото- и кинопленки. [c.76]

    Установлено, что добавка нативных асфальтенов (4—6%) к полиэтилентерефталату увеличивает его прочность на удар в 2 раза [c.348]

    Ответ. При одинаковой степени ориентации прочность волокон зависит от суммарной энергии межмолекулярных и межструктурных контактов. Для реализации одинаковых энергетических эффектов в случае полипропилена требуются более длинные полимерные цепи, нежели в случае полиэтилентерефталата. [c.16]

    В отличие от полиэтилентерефталата П. - быстро кристаллизующийся полимер макс. степень кристалличности 60%. Обладает высокими прочностью, жесткостью и твердостью, стоек к ползучести, хороший диэлектрик. Ниже приведены нек-рые св-ва П. [c.614]

    В работе [30] описана технология непрерывного нанесения металлического магнитного слоя из сплавов Со—N1—Р и Со—W на ленту из полиэтилентерефталата. Авторами был решен ряд проблем достигнута достаточная прочность соединения магнитного материала с инертной поверхностью пленок созданием шероховатого адгезионного слоя, состоящ,его из пластмассы и наполнителя разработан и применен стабильный раствор химического меднения с диэтилдитиокарбаматом натрия сконструировано устройство для непрерывной металлизации ленты. [c.260]

    При адгезии полиэтилентерефталата к гидрохлориду полиизопрена для достижения практически удовлетворительных значений адгезионной прочности был использован гомолог полиэтилентерефталата с молекулярной массой около 20 ООО [384, с. 155]. [c.136]

    Был установлен микрореологический механизм формирования S . При малых молекулярных массах адгезия существенно возрастала, но при этом когезионная прочность адгезива уменьшалась настолько, что происходило его когезионное разрушение. Для обогащения спектра времен релаксации за счет малых значений времен релаксации был использован гомолог полиэтилентерефталата с кислородным атомом в цепной молекуле, играющим роль шарнира [384]. При этом за счет интенсификации микро-реологических процессов существенно увеличилась адгезионная прочность склейки, не сопровождавшаяся уменьшением когезионной прочности. В работе [383, с. 122—126] также был установлен микрореологический механизм формирования при затекании расплава полиэтилена в микродефекты фольги. Было обнаружено два уровня размеров микродефектов связанных с прокатом металла в фольгу и обусловленных микропорами оксидной пленки алюминиевой фольги. Соответственно этому закону 5 = = /(4) я Ad = (4) существенно зависят от условий протекания микрореологических процессов. Например, при = 293 К обусловлены формированием 5 при затекании только в борозды поверхности фольги, а при = 463 К также одновременным затеканием в поры оксидной пленки. [c.136]


    В отношении изменений механических свойств под действием облучения полиэтилентерефталат вполне устойчив при умеренных дозах облучения. Разрывные прочность и удлинение увеличиваются при облучении дозами примерно до 50 Мрад, а при дозах 100—500 Мрад (облучение в реакторе) полиэфир интенсивно окрашивается. Сообщалось, что степень кристалличности, определяемая рентгенографически, при облучении увеличивается [304], уменьшается [305] или не меняется [300]. Снижение температуры стеклования при облучении в атомном реакторе дозами больше 1000 Мрад [306] является, вероятно, следствием снижения молекулярного веса полимера, а также пластифицирующего влияния образующихся низкомолекулярных продуктов деструкции. [c.193]

    Полиэтилентерефталат (стр. 292) является линейным полиэфиром с ярко выраженной кристаллической структурой он имеет огромное значение как синтетическое волокно (терилен, дакрон), а также как синтетический пленкообразующий материал (майлар). Большинство полиэфиров, если только они не являются в достаточной степени сшитыми для придания нерастворимости, легко гидролизуются. Однако кристаллический полиэтилентерефталат также чрезвычайно малорастворим и плохо гидролизуется. Для придания его молекулам ориентации, необходимой для кристаллизации, а также для увеличения предела его прочности на разрыв применяется холодное вытягивание. [c.298]

    Рукавный метод изготовления П. п. производительнее плоскощелевого, дает возможность более экономично расходовать сырье, но не обеспечивает получения равнотолщинной пленки с достаточно высокими физико-механич. показателями. Последнее обстоятельство связано с тем, что рукав из низковязкого расплава полиэтилентерефталата не обладает достаточной прочностью при переработке и деформируется (или рвется) под давлением раздувающего воздуха. Рукавные П. п. пригодны для бытовых и неответственных технич. целей. [c.57]

    Применение. Полиэтилентерефталат благодаря ценным свойствам изо дня в день находит все большее и большее применение [1363—1390]. Синтетическое волокно из полиэтилентерефталата обладает рядом важных свойств хорошим внешним видом, высокой прочностью и большим сопротивлением к истиранию оно легко моется, устойчиво против плесени, бактерий, моли, химических агентов, солнечного света и т. п. Это волокно имеет большое сходство с шерстью и с успехом ее заменяет [1367, 1377]. [c.41]

    Важной областью применения пленок является фото- и кинопромышленность. Здесь, широко применяется пленка из нитроклетчатки, ацетилцеллюлозы, полиэтилентерефталата и других материалов. Пленка из полиэтилентерефталата (лавсан или майлар) применяется для аэрофотосъемки, так как она имеет высокую прочность в интервале от —50 до 83°, высокую размерную стабильность и стойкость к старению [95]. [c.31]

    Взаимодействием нафталина с этилбензолом или с этиленом в присутствии л(-ксилола и хлорида алюминия можно получать 2-этилнафталин и далее 2-винилнафталин [107]. Полимеры 2-ви-нилнафталина и сополимеры со стиролом имеют достаточно высокую механическую прочность и теплостойкость, 2-винилнафталин применяется также в производстве ионообменных смол. Окислением 2,6-диметилнафталина получают 2,6-нафталиндикарбоно-вую кислоту — сырье для полиэфирных волокон более термо- и водостойких, чем полиэтилентерефталат [108]. Алкилированием нафталина хлоралканами производятся парафлоу — депрессоры, понижающие температуру застывания смазочных масел. Нафталин может использоваться также в качестве сырья для синтеза антра-хинона [109]. [c.339]

    Синтетическими волокнами называют волокна, полученные из синтетических полимеров. Первыми синтетическими волокнами, выпущенными в промышленном масштабе, были полиамидные волокна — капрон, найлон, анид (стр. 479). В настоящее время полиамидные волокна производят во многих странах под разными названиями. По прочности, носкости, эластичности, стойкости к процессам старения они превосхадят природные волокна. Высокими качествами обладает группа синтетических волокон, получаемых из полиэфирной смолы — полиэтилентерефталата (лавсана, стр. 480). Полиэфирные волокна обладают высокой прочностью, 1(оскостью и особенно сопротивлением сминанию. Важное значение приобретают волокна из полиэтилена, полипропилена (стр. 468, 469), полихлорвинила (стр. 470), полистирола (стр. 470), полиакрилонитрила (стр. 473), сополимеров винилацетата и хлористого винила, поливинилового спирта (стр. 471). [c.484]

    Из полиэтилентерефталата вырабатывают искусственное волокно лавсан. Лавсан обладает высокой прочностью, стойкостью к, истиранию, устойчивостью к действию химических веществ. Из него вырабатывают ироч- [c.418]

    Четвёртым направлением данной работы явилось использование новых гетероциклических модификаторов на основе производных ароматических MOHO- и дикарбоновых кислот и их ангидридов для улучшения свойств вторичных полимеров и их смесей (например, на основе вторичного полиамида-6 и отходов полиэтилентерефталата - пищевая тара). Модифицированные материалы характеризуются более высокой вязкостью, и повышенными значениями прочности при растяжении и изгибе, увеличенной ударной вязкостью, существенно сниженным водопоглощением. Прочностные характеристики модифицированных вторичных полимеров приближаются к свойствам исходных полимеров. Таким образом подтверждена возможность и выданы рекомендации по утилизации накопившихся отходов пищевой тары с использованием новых модификаторов для получения литьевых изделий. [c.28]


    Осн. св-ва М. близки к св-вам обычных комплексных нитей (см. Волокна химические, а также табл.). Для полиамидных М, характерны высокие прочность, устойчивость к истиранию и знакопеременным деформациям, прочность в узле и петле, достаточная атмосферостойкость, однако они имеют невысокий. модуль упругости, нестойки к действию щелочен и г-т, М, из полиэтилентерефталата, наряду с высокой прочностью, обладают повышенными модулем упругости и износостойкостью они более гидрофобны, чем полиамидные М., имеют высокую био- и атмосферостойкость. Полиолефиновые М. имеют высокие прочность, устойчивость к знакопеременным деформациям, гидрофоб ность, хим. стойкость, однако обладают низкими атмос феро- и износостойкостью. М, из СВХ гидрофобны, износо стойки для них характерны высокие электроизоляц. св-ва, однако сравнительно невысокие прочность и устойчивость к знакопеременным деформациям. [c.135]

    Адгезивы первой стадии на основе блокированных ди- и полиизоцианатов [369, 370] вряд ли подходят России, поскольку в ней нет хотя бы среднетоннажного производства диизоцианатов. Гораздо более прилекателен состав на основе лишь диг-лицидилового эфира глицерина или иного многоатомного спирта в сочетании с анионоактивными ПАВ [371]. При нагревании пропитанного корда происходит деблокировка изоцианатных групп, которые взаимодействуют с ОН-группами полиэтилентерефталата и тем самым обеспечивается высокая прочность связи. Аналогичную роль могут выполнять соединения с [c.344]

    Прядение волокна на основе полиэтилентерефталата (лавсан — 1 ССР, терилен — Англия) осуще ствляется из расплава с после-1ующей вытяжкой при 80—120°С. Волокно обладает высокой иеханической прочностью и большой устойчивостью, к действию повышенных температур, света, истирания и окислителей [46]. Лавсан является полноценным заменителем натуральной шерсти. Пленки из него при очень малой толщине весьма прочны. [c.309]

    Аморфные полимеры в целом демонстрируют меньшую зависимость деформационно-прочностных свойств от температуры (рис. 29 б, 32). Вместе с тем и в этой группе большая теплостойкость материала определяет соответственно и повышенное сопротивление тепловому воздействию. Такие пластики как поликарбонат (ПК), полиэтилентерефталат (ПЭТФ), полисульфон (ПСФ) при Т > 100 °С сохраняют более 70 % прочности. [c.104]

    Широкое применение в качестве адгезивов в резинотканевых системах получили изоцианаты [35, 39, 56, 68—80]. Особенно пригодны адгезивы на основе изоцианатов для полиэфирного корда. На рис. VI 1.9 показано, как изменяется сопротивление отслаиванию в системе наирит — пленка полиэтилентерефталата — наирит при введении в состав адгезива (клея на основе наирита) триизо-цианаттрифенилметапа. Здесь также обнаруживается экстремальный характер завпсимости адгезионной прочности от концентрации функциональных групп в адгезиве. [c.276]

    Наличие у адгезива и субстрата групп, способных к образованию водородных связей, комплексов с переносом зарядов, ион-дипольных и других взаимодействий, еще не означает, что в этой системе может быть легко достигнута высокая адгезионная прочность. Число функциональных групп адгезива и субстрата, вступивших во взаимодействие, лишь косвенным образом связано с их общим количеством, а иногда эта связь вообще отсутствует. На первый план выступает вопрос о взаимном соответствии структурных параметров адгезива и субстрата, о доступности функциональных групп соединяемых материалов. Химическая инертность таких материалов, как полиэтилентерефталат, полипиро-меллитимид и политетрафторэтилен, также связана, очевидно, в первую очередь со стерическими факторами. В большинстве случаев значительная часть функциональных групп на поверхности раздела адгезив — субстрат по тем или иным причинам не участвует во взаимодействии. Поэтому каждое молекулярное взаимодействие функциональных групп на границе раздела фаз на учете . Нужно стараться не допускать уменьшения числа этих взаимодействий. [c.368]

    Одним из самых интересных полиэфиров является полиэтн-лентерефталат (майлар или терилен). Литтл [4] установила, что полиэтилентерефталат более стоек по отношению к излучению, чем алифатические полиэфиры. Зисман и Бопп [3] обнаружили значите.тьное уменьшение прочности и удлинения при 10 нейтрон/см . Чарлзби сообщил, что терилен сшивается при облучении в ядерном реакторе, но Литтл [4, 6] подвергла это сомнению. Она нашла, что водород или совсем не выделяется, или его выделяется очень мало, а также мало выделяется и других газов, и полная потеря прочности происходит после получения дозы 1,5-Ю нейтрон/см . Рентгенограмма первоначально кристаллического полимера после облучения не нарушается материал, который вначале аморфен, после облучения может быть подвергнут отжигу до высокоупорядоченного состояния,. Это показывает, что происходит деструкция, сопровождающаяся незначительным сшиванием или даже не сопровождающаяся им. При значительном протекании процесса сшивания следует ожидать нарушения кристаллической картины  [c.189]

    Первое место по объему выпуска во всех странах занимают эмалированные обмоточные провода классов нагревостойкости В и F с изоляцией на основе полиэти-лентерефталатных лаков и их модификаций, что обусловлено повышением температур эксплуатации электрооборудования. Эта изоляция обладает достаточной механической прочностью, позволяющей использовать провода при механизированной намотке. Модификация полиэтилентерефталата нолиамрщами, нолиими-дами, циануратами способствует повышению нагревостойкости изоляции, ее стойкости к тепловым ударам и механич. прочности. [c.489]

    Емкости из полиэтилентерефталата устойчивы к разбиванию и растрескиванию, они в 10 раз легче стеклянных, их транспортировка на 40% дешевле. По прочности на разрыв и газонепроницаемости полиэтилентерефталат превосходит многие полимеры. Технология изготовления бутылок из этого полимера была разработана фирмой Du Pont (США) в середине 70-х годов. В 1984 г. их производили по лицензии на 57 предприятиях в 12 странах мира. [c.176]

    Введение гидрофильных блоков в макромолекулы гидрофобных полимеров используют для получения волокнообразующих Б. с повышенной восприимчивостью к красителям. Так, блоксоиолимеризация окиси этилена с полиэтилентерефталатом приводит к образованию веществ, сохраняющих высокую темп-ру плавления, вязкость и прочность полиэтилентерефталата, но обладающих повышенной способностью к адсорбции воды и к окрашиванию. Вместе с тем присутствие блоков полиэтиленоксида приводит к снижению темп-ры [c.137]

    Клеи ДЛЯ склеив a-ниятeплo тoйкиxpe-зин и крепления их к металлам (табл. 6), как уже отмечалось, готовят обычно на основе р-ров кремнийорганич. каучука, к-рый придает клеевому соединению эластичность. В тех случаях, когда клей применяют для крепления резин к металлам, в его состав с целью повышения прочности клеевого шва вводят различные кремнийорганич. полимеры. Соединения, выполненные клеями этой группы, устойчивы к воздействию химич. реагентов, масел, влаги, атмосферных условий. Их теплостойкость м. б. повышена добавкой окислов (СгаОд, МпО, Na20) или гидроокисей [7г(ОН)2, N 1(0Н)2] тяжелых металлов. В ряде случаев эти клеи применяют для склеивания стекла, тканей, полиэтилентерефталата, фторопласта-4, керамики и др., а также успешно используют в качестве герметизирующих составов в самолето- и ракетостроении. Клеи для приклеивания теплозвукоизоляционных материалов к сталям и сплавам титана (табл. 7). Специфика клеев этой группы — возможность склеивания тепло-звукоизоляционных материалов без нагрева и давления с образованием клеевых соединений, к-рые можпо эксплуатировать при 300—400 °С. [c.577]

    Получение. М. можно формовать из большинства волоктобразующих полимеров. Однако чаще всего используют полиамиды, полиэтилентерефталат, полиолефины и сополимеры винилиденхлорида с винилхлоридом (см. Винилиденхлорида сополимеры). М. формуют через фильеру с одним или несколькими отверстиями, чаще всего из расплавов полимеров, т. к. при формовании из р-ров получают М. со значительной пористостью и, следовательно, невысокой прочностью. О методах формования и применяемом оборудовании см. Формование химических волокон. Прядильные машины, М. условно подразделяют на волокна малого 0,1 мм) и большого О 0,1 мм) диаметра. М. малого диаметра незначительно отличаются по свойствам от текстильных элементарных волокон. Получают оба эти типа волокон по одинаковой технологической схеме — формованием в воздушную охлаждающую среду. [c.148]

    Для выравнивания М. по диаметру иногда используют метод волочения, аналогичный тому, к-рый применяют при калибровке металлич. проволоки.Напр., при получении М. из полиэтилентерефталата вначале проводят волочение в горячей воде, а затем — дополнительное ориентационное вытягивание. При этом получают М., отличающееся равномерным диаметром по всей длине и повышенной прочностью — 500 мн текс (50 гс1текс). Приспособление для калибровки М. располагают перед зоной ориентационного вытягивания. [c.149]

    Распространенный способ улучшения физико-механич. показателей П. п., особенно прочности при раз-дире,— армирование тканями из синтетич. волокон, гл. обр. из полиамидов. Др. способ модификации — изготовление многослойных пленок. Напр., трехслойная пленка, внешние слои к-рой состоят из пластифицированного сополимера е-капролактама с солью АГ, а внутренний из полиамида-6, обладает высокой эластичностью и атлюсферостойкостью. Двухслойные пленки полиамид — полиэтилен и трехслойные пленки поливинилиденхлорид — полиамид — полиэтилен или полиэтилентерефталат — полиамид — полиэтилен морозостойки и выдерживают продолжительное кипячение в воде. [c.365]

    Волокно из продукта поликонденсации терефталевой к-ты или ее диметилового эфира и гексагидрокси-лилепгликоля (кодель в США, вестан в ФРГ) обладает более высокой темп-рой плавления (до 290— 295°С), чем полиэтилентерефталатное, меньшими пиллингом и плотностью (1,22), лучшей накрашиваемо-стью обычными дисперсными красителями и азокрасителями, большей стойкостью к тепловому старению. Ткани из этого волокна можно гладить при темп-рах до 205—215°С потеря прочности пряжи за 1000 ч при 160°С составляет 50% (у терилена — 60%) прочность при 260°С, когда волокно из полиэтилентерефталата плавится, составляет 0,45 гс текс. [c.61]

    Различными авторами было изучено действие на полиэфиры различного вида излучений и погоды [133, 194, 449—457]. Так, Колман [133] исследовал стойкость полиэтилентерефталата и блокполиэфиров полиэтилентерефталата с полиэтиленоксидом к ультрафиолетовому свету. Оказалось, что стойкость блоксо-полимеров значительно ниже, чем полиэтилентерефталата. В случае окрашенных образцов полиэтилентерефталата и блок-полимеров обесцвечивание красителей под действием света также происходит быстрее у блоксополимеров. Каррик и другие [4491 изучали влияние коротковолновых ультрафиолетовых, рентгеновских, у-лучей на прочность и эластичность пленок алкидных смол, модифицированных соевым маслом, и нашли, что при облучении ультрафиолетовыми лучами происходит постепенно возрастание прочности пленки на разрыв и уменьшение ее эластичности и растяжимости. При длительной экспозиции прочность на разрыв достигает максимального значения затем начинает уменьшаться. Лотон и другие [4501 установили, что при об- [c.27]

    Многие исследования посвящены изучению механических и электрических свойств полиэтилентерефталата вытяжке волокна [1134, 1136, 1140, 1141], вынужденной эластичности [1135], деформации [1137], влиянию скорости на кинетическое трение нальду [1138],модулюупругости при различных степенях растяжения [1139], релаксации напряжений [1203], связи напряжения деформации и двойного лучепреломления [1142], трибоэлектрическим свойствам [1143], электропроводности [1144], диэлектрической прочности, сопротивлению изоляции и другим [1145]. [c.40]

    Сравнительно недавно был получен полиэтилентерефталат (—СНг — СН200С< С0—который под названием лавсан, терилен, дакрон, майлар и т. д. применяется для производства синтетического волокна и пленки, отличающихся выдающейся прочностью и термостойкостью [68]. Пленка из лавсана имеет исключительную прочность и применяется как основа кинопленки, для электроизоляции, а также в различных областях техники [613]. [c.99]


Смотреть страницы где упоминается термин Полиэтилентерефталат прочность: [c.424]    [c.196]    [c.676]    [c.470]    [c.344]    [c.158]    [c.80]    [c.141]    [c.470]    [c.190]    [c.312]    [c.127]    [c.469]    [c.352]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.237 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэтилентерефталат



© 2025 chem21.info Реклама на сайте