Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галлий и его соединения реакции

    Алкильные и арильные соединения индия можно синтезировать при помощи реакций, аналогичных реакциям получения производных галлия. Прямая реакция между металлическим индием и ртутьалкилами протекает, однако, очень медленно, и для того чтобы довести реакцию до конца (хотя она, по-видимому, не является обратимой), необходимо повышение температуры [2, 4, 5, 47]. [c.159]


    Взаимодействие нефтяных сульфидов с галогенами, галогеналкилам и, солями и комплексами тяжелых металлов. Нефтяные сульфиды образуют стабильные комплексы донорно-акцепторного типа с галогенами, галоген-алкилами (метилиодидом и др.), с солями металлов — олова, серебра, ртути, алюминия, цинка, титана, галлия и другими кислотами Льюиса за счет передачи неподеленной пары электронов атома серы на свободную электронную орбиталь акцептора. Важнейшие комплексообразователи — хлорид алюминия, тетрахлорид титана, хлорид ртути(II), ацетат серебра, карбонилы железа. Реакции комплексообразования не селективны, в той или иной степени они протекают и с другими типами гетероатомных соединений. Однако в сочетании с другими физико-химическими методами ком-плексообразование служит важным инструментом установления состава, строения сульфидов. [c.250]

    Пособие содержит описания лабораторных работ по общей химии (определение эквивалентов и молекулярных масс, кинетика реакций, электролитическая диссоциация, гидролиз и др.), а также опытов по изучению свойств элементов н их важнейших неорганических соединений. Особое внимание уделено описанию синтезов соединений, не требующих сложной аппаратуры. Каждый раздел заканчивается перечнем контрольных вопросов, упражнений и задач. В практикум по неорганической химии впервые включен ряд инструментальных работ (определение частного порядка и константы скорости реакции, определение коэффициента распределения, спектрофотометрическое определение состава комплексов и др.) и опытов по химии элементов (химии галлия и лантаноидов, химические свойства фосфорной кислоты и ее солей и др.). [c.2]

    На практике в качестве промежуточных соединений в рассматриваемом галогенидном методе используют летучие галоге-ниды, под которыми условно подразумевают галогениды, имеющие давление насыщенного пара при 500 К более 10 Па, и для которых разработаны достаточно эффективные методы очистки. Из рассмотрения свойств галогенидов элементов периодической системы следует, что возможности галогенидного метода достаточно высоки (рис. 1). Действительно, как видно из рис. 1, летучие галогениды имеют более чем 20 элементов, в то время как галогенидный метод используется для глубокой очистки лишь некоторых из них (бор, галлий, олово, мышьяк, сурьма, висмут, молибден, вольфрам). Расширению возможностей галогенидного метода может способствовать и более широкое использование реакций термораспада летучих галогенидов (иодидов). Однако следует иметь в виду, что при повышенных температурах, обычно характерных для процесса термораспада, возрастает веро- [c.12]


    При образовании некоторых, сульфидов и их аналогов (например, щелочных и щелочноземельных металлов, магния, цинка) выделяется много теплоты, реакция протекает очень бурно, и ампула, особенно стеклянная, разрушается. Поэтому металл следует брать не в виде тонкого порошка, а в виде стружки, мелких гранул или крупки. Щелочные и щелочноземельные металлы и некоторые другие разрушают стекло и загрязняют продукты реакции соединениями кремния. Поэтому их сульфиды получать таким способом нельзя. Этим методом можно получать сульфиды, селениды элементов подгруппы железа, хрома, ванадия, титана, галлия, а также меди, серебра, марганца. В тех случаях, когда вещество пе плавится, обычно после 1—2-часового нагревания прп температуре, рекомендованной в прописях, оно будет неоднородно по составу. Рекомендуется ампулу разбить, вещество растереть в ступке, снова поместить в ампулу, запаять ее, а затем назревать в течение 2—3 ч (можно еще раз не нагревать, но тогда процесс должен длиться 10—15 ч). [c.47]

    Водные растворы солей элементов подгруппы галлия имеют кислую реакцию вследствие сильного гидролиза. По характеру растворимости солей и склонности их к гидролизу элементы подгруппы галлия напоминают соответствующие соединения алюминия. Гидролиз солей (первая стадия) протекает по уравнению  [c.172]

    Основная валентность галлия -f 3 и только отвечающие ей соединения устойчивы в водных растворах. Нормальный потенциал Ga относительно раствора соли галлия (III) — 0,56 В. Относительно щелочного раствора, где можно предполагать реакцию [c.226]

    Комм. К какому типу простых веществ относятся бор, алюминий, галлий, индий Используя результаты опытов и справочные данные, сравните восстановительные свойства простых веществ в кислотной, щелочной и нейтральной среде. Почему для взаимодействия алюминия с водой требуется предварительная обработка его поверхности (Оп. 4 и П4) Рассчитайте термодинамические характеристики реакций взаимодействия алюминия с неметаллами и оксидом металла (Оп. 5, Оп. 6, Оп. 7). Как меняется металлич-ность простых веществ в ряду бор — алюминий — галлий — индий — таллий Охарактеризуйте устойчивость степеней окисления этих элементов в соединениях. [c.186]

    В настоящем разделе рассмотрены наиболее важные реакции органических соединений переходных ме галлов. Необычные превращения алкенов, алкадиенов-1,3 и алкинов, протекающие в при- [c.335]

    Алкилирование и ацилирование ароматических и алифатических соединений катализируются электрофилами — галогенидами металлов всех групп периодической таблицы, за исключением подгруппы щелочных металлов. В этих реакциях Фриделя — Крафтса в качестве катализаторов особенно часто применяют галогениды алюминия, олова, мышьяка, железа, цинка, бора и галлия. [c.181]

    За последние годы исследовано взаимодействие галлия со многими органическими соединениями, причем последние подбираются на основании определенных теоретических предпосылок в расчете на максимальную селективность и чувствительность реакции с галлием. Так, А. М. Лукин и Е. А. Божевольнов [ИЗО] предложили вслед за упоминавшимся выше галлионом новый реактив — триоксихлоразобензолсульфокислоту, которая образует с галлием соединение, флуоресцирующее как в водных растворах, так и в органических растворителях. Этот реактив более селективен, чем галлион, и позволяет определять 0,01 мкг галлия в 5 мл водного раствора (на монохроматоре с фотоумножителем) и 0,005 мкг в 5 мл при извлечении изоамиловым спиртом. И. М. Коренман с сотрудниками [1131] получили ряд азокрасителей, которые также могут быть применены как реактивы на галлий и, с другой стороны, как индикаторы при комплексоно-метрических титрованиях. [c.420]

    В свою очередь, при взаимодействии треххлористого галлия с диметилсилоксанами также образуются метилдихлоргаллан и (СНз51С10) . Треххлористый индий не реагирует с силоксанами даже при температурах выше 200°. Образование ди- и триметили-рованных соединений галлия в реакции по схеме (3-151) не происходит. [c.287]

    Из других, более доступных, чем родамин Б, красителей трифенил-метанового ряда интересным реактивом на галлий оказался основной ярко-зеленый (бриллиантовый зеленый), который вбЛ- / НС1 образует с галлием соединение, извлекающееся бензолом и окрашивающее его в ярко-зеленый цвет 163]. Реакция обладает высокой избирательностьто и позволяет открывать 1 -Ю г Са и 1 мл бензола. [c.206]

    Все элементы подгруппы галлия легко вступают в реакцию при комнатной температуре или при нагревании с галогенами, серой, кислородом, фосфором и другими неметаллами. При взаимодействии с металлами они образуют большое число интерметаллкческих соединений и сплавов некоторые нз них обладают ценными физическими свойствами (например, УзОа, МЬзОа проявляют свойства сверхпроводников). [c.169]

    Комплексные соединения элементов подгруппы галлия широко используются для их количественного определения, разделения и очи-стки. Так, из растворов (6—8 М) галогеноводородных кислот элементы подгруппы галлия легко экстрагируются органическими растворителями в виде Н[М Т4], чем пользуются при их отделении от сопутствующих элементов, например алюминия, который в этих условиях образует неэкстрагирующиеся анионные комплексы состава [А1Г (Н20)б-п] Комплексные соединения с купфероном, 8-оксихинолином, этиленди-аминтетраацетатом используются для количественного определения элементов, а с ацетилацетоном и его производными — для получения окисных пленок, проведения транспортных реакций, а также для очистки и разделения смесей элементов подгруппы галлия. [c.179]


    Трихлорид галлия, как и остальные тригалогениды, способен к большому числу реакций присоединения с различными органическими веществами, содержащими азот, кислород, серу, фосфор, мышьяк и т. д. [76]. Многие из таких продуктов присоединения плавятся и даже перегоняются без разложения. Так с нитробензолом трихлорид галлия образует два соединения — конгруэнтно плавящийся ОаС1з- [c.243]

    Методы разделения галлия и алюминия в кислых растворах. Методы осаждения. Предложен ряд реакций осаждения галлия из кислых растворов, в основном в виде органических соединений [75]. Из них в промышленной практике применялись методы осаждения галлия в виде купферроната и ферроцианида. Купферрон — аммонийная соль нитрозофенилгидроксиламина СбНдЫаОаННд — осаждает наряду с галлием также железо, медь, титан, ванадий, молибден и многие другие элементы, но не осаждает алюминий. Алюминий только захватывается осадком. Осаждение ведется из 2 н. сернокислых растворов. Ферроцианид калия в отличие от алюминия осаждает галлий из кислых растворов вместе с железом и многими тяжелыми металлами. Однако полученные гелеобразные осадки плохо фильтруются. Кроме того, есть опасность выделения синильной кислоты при последуюш,ем разложении ферроцианидов. [c.252]

    Соединения с кислородом. Окись 1П2О3 получают, прокаливая гидроокись галлия или его нитрат. Она светло-желтая, приобретает при нагревании коричневую окраску. Кристаллизуется в кубической решетке типа МП2О3. Плотность 7,1 г/см . Легко растворяется в кислотах, если не была подвергнута сильному и продолжительному прокаливанию. Прокаленная окись индия на холоду реагирует с кислотами очень медленно, но хорошо растворяется в разбавленных кислотах при нагревании. Щелочи на нее не действуют. Теплота образования 221 ккал/моль. При 700—800° восстанавливается водородом или углеродом до металла. Плавится при 1910°. Нелетуча. При нагревании выше 1200° частично диссоциирует, образуя низший окисел [21. Монокристаллы окиси индия в виде прозрачных зеленоватых кубиков или октаэдров получают путем, транспортной реакции [7  [c.282]

    Катализаторами при реакции нитрования могут слугкить также соединения хрома, вольфрама, молибдена, тантала, ниобия, ванадия, галлия и индия [17]. Особо следует отметить применение фтористого бора как катализатора при реакции нитрования ароматических соединений [18]. [c.10]

    Принципиальная схема аппаратуры для газофазной эпитаксии за счет реакций химического переноса показана на рис. VI.18. Галлий транспортируется в виде субхлорида, образующегося при пропускании хлористого водорода над расплавом металла. Мышьяк и фосфор — в виде арсина и фосфина. Донорную примесь (селен) вводят в виде селеноводорода. Иногда применяют теллур или кремний в виде теллурорганических соединений и силанов. Акцептор (цинк) поступает обычно за счет диффузии из пара уже после выращивания эпитаксиального слоя. Газом-носителем служит водород, очищенный пропусканием через нагретый палладиевый фильтр. Скорость выращивания достигает 40 мкм/мин. К достоинствам этого метода относится высокая чистота конечного продукта и большая степень его однородности кроме того, этот метод отличается простотой, надежностью, производительностью, и, следовательно, экономичностью. Недостаток метода — низкая степень использования исходных продуктов ( 3%), а также необходимость работы с токсичными веществами (гидриды мышьяка, фосфора, селена и теллура). Схему, показанную на рис. 1.18, обычно используют в лабораторных условиях. Для повышения производительности [c.148]

    Родамин С — темные кристаллы с зеленоватым блеском или красновато-фиолетовый порошок. Растворимость в 100 мл воды 0,78 г, этанола 1,47 г, растворим в ацетоне. Нерастворим в бензоле, мало растворим в растворах кислот и щелочей. Этанольные и водные растворы синеватокрасного цвета с сильной красной флюоресценцией, особенно заметной в разбавленных растворах. Слабо растворим в растворах соляной кислоты и гидроксида натрия. Очищают перекристаллизацией из этанола. Применяют для обнаружения и определения сурьмы (П1), (5ЬС1б) , вольфра-матов, цинка, 2п(5СН)4]2- и ионов других элементов, а также в качестве люминесцентного реактива для определения малых количеств таллия (П1), галлия (П1) и др. В солянокислом растворе анионы хлоргаллата образуют с родамином С комплексное соединение, экстрагируемое органическими растворителями и флюоресцирующее оранжево-красным цветом. Наибольшая яркость флюоресценции наблюдается при его извлечении смесью бензола с эфиром в соотношении (8 5) из 6 н. соляной кислоты. Чувствительность реакции 0,01 мкг галлия в 1 мл. [c.194]

    Проблемы, связанные с перегруппировками алкильного остатка, не единственная причина использования этого альтернативного пути. Переалкилирование продукта, образуюшегося при кинетическом контроле, мол<ет приводить в конечном счете к термодинамически наиболее устойчивому продукту. Наиболее устойчивыми термодинамически являются лега-алкильные производные. Например, было найдено, что при реакции толуола с этилбромидом в присутствии бромида галлия(II) образуются о-этилтолуол (38,4%), м-этилтолуол (21%) и п-этилтолуол (40,6%). По сравнению с соотношением изомеров, получаемым при нитровании толуола, в данном случае выход ж-изомера высок. Этот факт может быть успешно использован в синтетических целях. Так, при реакции грег-бутилбензола с грег-бутилхлоридом в присутствии хлористого алюминия (в начальной стадии при —40°С) образуется 1,3,5-три-грег-бутилбензол с выходом 80% [30]. Тот же продукт получается при грег-бутилировании 1,4-ди-грег-бутилбензола. Опыты с меченными тритием соединениями обнарул<или, что преобладающим, если не совершенно полным, является межмолекулярный перенос грег-бутильных групп. Результаты согласуются с механизмом, приведенным ниже (уравнение (59)  [c.349]

    Известно несколько методов получения соединений галлия и индия. Так, обменные реакции между органическими соединениями индия и галлия и их тригалогенидами, используют для синтеза различных алкплгаллий- и алкилиндийгалогенидов (схемы 141, 142). Для осуществления этих реакций необходимо, чтобы каждый нз центральных атомов металла имел вакантную орбиталь, способную участвовать в образовании мостика. Нуклеофильные растворители подавляют реагщии перераспределения. [c.134]

    Аналогичная реакция протекает и между тринзобутилпндием и децеиом-1. Одиако нестабильность три-к-децилиндия ири температурах, необходимых для выделения изобутена, делает этот метод неприемлемым для синтеза высших триалкильных соединений индия. Легкость, с которой изобутильные соединения металлов III группы вступают в обменные реакции, уменьшается, по-видимому в ряду А1 > В > Ga > In. По этой причине температуры, нри которых возможно осуществление этих реакций с соединениями галлия и индия, заметно превышают температуры аналогичных реакции алкилзамещенных алюминия [117]. [c.137]

    Реакции галлий- и индийорганических соединеннй [c.138]

    Реакция тризамещепиых органических соединений галлия и индия с бромом и иодом в зависимости от соотношения реагентов может приводить к моно- или дигалогензамещенным. Папример, [c.138]

    Как ц в случае соединений алюминия, в реакции карбоксилирования триалкильных производных индия и галлия участвует одна алкильная группа. Однако внедрение СО2 по связи Ga—С и In—С возможно лишь ири повышенных температурах (схема 167), тогда как аналогичная реакция в ряду замещенных алюмшщя легко идет при комнатной температуре [122]. [c.139]

    Опубликовано лишь немного сведений о реакциях галлий- и индийорганических соединений с альдегидами и кетонами. Показано, что они аналогичны реакциям соответствующих реактивов Грииьяра (схе.мы 169, 170) [123]. [c.139]


Смотреть страницы где упоминается термин Галлий и его соединения реакции: [c.244]    [c.91]    [c.25]    [c.591]    [c.425]    [c.446]    [c.153]    [c.244]    [c.244]    [c.300]    [c.336]    [c.150]    [c.26]    [c.133]    [c.135]    [c.136]    [c.136]    [c.137]    [c.137]    [c.138]    [c.588]    [c.140]   
Перекись водорода (1958) -- [ c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлий, реакции

Галлия соединения

Галлы



© 2025 chem21.info Реклама на сайте