Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тирозин см крови

    При поражениях печени нарушается также процесс дезаминирования аминокислот, что способствует увеличению их концентрации в крови и моче. Так, если в норме содержание азота аминокислот в сыворотке крови составляет примерно 2,9 ,3 ммоль/л, то при тяжелых заболеваниях печени (атрофические процессы) эта величина возрастает до 21 ммоль/л, что приводит к аминоацидурии. Например, при острой атрофии печени количество тирозина в суточном количестве мочи может достигать 2 г (при норме 0,02-0,05 г/сут). [c.559]


    По-видимому, большое значение в процессах регуляции клеточного деления имеет группа белков, программируемых так называемыми онкогенами. Измененные (мутантные) формы этих генов обнаруживаются в опухолевых клетках и входят в ряде случаев в виде соответствующих РНК-копий в состав онкогенных (т.е. вызывающих опухоли) ретровирусов. Первым открытым онкогеном был ген sr , входящий в состав вируса саркомы Рауса. Программируемый им белок, продукт гена sr , оказался протеинкиназой, которая в отличие от протеинкиназ класса А и протеинкиназы С катализировала фосфорилирование определенного спектра клеточных белков по остаткам тирозина, а не по остаткам серина и треонина, Дальнейшие исследования показали, что такая активность присуща некоторым рецепторам факторов роста, в частности рецептору эпидермального фактора роста. Ген erd, программирующий аналог этого рецептора, был обнаружен в составе онкогенного вируса птичьего миелобластоза, В настоящее время открыто несколько десятков онкогенов. В большинстве изученных случаев продукты этих онкогенов в здоровых клетках являются участниками передачи митогенных (т. е. управляющих, митозами) сигналов. В ряде опухолей, в том числе человеческих, найдены онкогены, программирующие аналоги белка G,воспринимающего сигна-, лы от комплексов эффектор - рецептор (в частности, онкогены Н—ras и К—ras) онкогены, программирующие синтез аналогов самих факторов роста, например онкоген sis, входящий в состав вируса саркомы обезьян, продукт которого является аналогом фактора роста, выделяемого тромбоцитами (клетками крови, участвующими в процессе свертывания) онкогены, продуктами которых являются аналоги ядерных белков, по-видимому, участвующих на заключительных этапах каскада превращений, возникающего в ответ на митогенный сигнал (онкогены туе, fos и др.). [c.428]

    ИОД И ЧЕЛОВЕК. Организм человека пе только не нуждается в больших количествах иода, но с удивительным постоянством сохраняет в крови постоянную концентрацию (10-5—10- %) иода, так называемое йодное зеркало крови. Из общего количества иода в организме, составляющего около 25 мг, больше половины находится в щитовидной железе. Почти весь иод, содержащийся в этой железе, входит в состав различных производных тирозина — гормона щитовидной железы, и только незначительная часть его, около 1%, находится в виде неорганического иода 1 . [c.79]

    Длительное нагревание гидролизата, конечно, невозможно провести во время одного (обычно трехчасового) занятия. Ввиду этого кислотный гидролиз белков сыворотки крови, а также шелка с выделением тирозина (см. ниже) удобнее проводить не в одно занятие, а в два, с тем чтобы гидролиз был закончен в перерыв между студенческими занятиями. Рекомендуется также иметь заранее приготовленный гидролизах, с которым можно закончить работу в то же занятие, [c.34]


    Но при процессах обмена часть циркулирующих в крови и находящихся в тканях незаменимых аминокислот постоянно используется не только для синтеза белков, но и для образования других биологически важных соединений. Так, например, из фенилаланина после окисления его в тирозин в щитовидной железе образуется важный гормон тироксин, в мозговом веществе надпочечника тирозин превращается в другой гормон — адреналин из аргинина получается креатин, входящий в состав мышц, метионин иг рает большую роль в процессах синтеза важнейших метилированных сое динений (холина и креатина, стр. 347) и т. д. Таким образом, часть неза менимых аминокислот постоянно извлекается из крови, и, следовательно остающиеся аминокислоты уже не могут быть полностью использованы для синтеза тканевого белка. Этим в значительной мере и можно объяснить тот факт, что аминокислоты, освобождающиеся в тканях при голодании в результате расщепления тканевых белков, не используются вновь орга- [c.325]

    Образовавшиеся в кишечнике под действием бактерий ядовитые продукты распада тирозина - крезол и феиол — после всасывания обезвреживаются в печени, в которую оттекающая от кишечника кровь попадает через систему воротной вены. Обезвреживание фенола и крезола может происходить двояким путем либо посредством связывания их с серной кислотой, либо путем соединения их с глюкуроновой кислотой. [c.337]

    Но при процессах обмена часть циркулирующих в крови и находящихся в тканях незаменимых аминокислот постоянно используется не только для синтеза белков, но и для образования других биологически важных соединений. Так, например, из фенилаланина после окисления его в тирозин в щитовидной железе образуется важный гормон тироксин, в мозговом веществе надпочечника тирозин превращается в другой гормон — адреналин, из аргинина получается креатин, входящий в состав мышц, метионин играет большую роль в процессах синтеза важнейших метилированных соединений (холина и креатина, стр. 366) и т. д. Таким образом, часть незаменимых аминокислот постоянно извлекается из крови, и, следовательно, остающиеся аминокислоты уже не могут быть полностью использованы для [c.342]

    Клетки, выращиваемые в тканевой культуре, могут утратить способность к ряду обменных превращений. Вполне вероятно, однако, что лишь некоторые виды клеток животного организма осуществляют такие реакции, как синтез глутамина или превращение фенилаланина в тирозин. По-видимому, глутамин синтезируется в определенных клетках и переносится к другим током крови. Интересно отметить, что минимальная концентрация глутамина, необходимая для оптимального роста тканевых культур, значительно выше, чем необходимые. концентрации других аминокислот. Количество глутамина в крови также значительно превосходит содержание в ней других аминокислот (табл. 3). [c.132]

    Каталаза Ре(1П) Аминокислотные остатки, гнстидин, тирозин Кровь Катализирует реакцию разложения водород-перокснда 2Н 0, = 2Н,0 + 0, [c.261]

    Биосинтез Т. происходит в фолликулах щитовидной железы путем конденсации двух остатков молекул дииодтирозина, входящих в состав тиреоглобулина - гликопротеина, содержащего ок. 5 тыс. аминокислотных остатков (из них 120-остатки тирозина). Иодирование остатков тирозина осуществляется иодом, к-рый образуется путем ферментативного окисления иодидов, поступающих в щитовидную железу вместе с кровью. Механизм биосинтеза Т., по-види-мому, включает окисление остатка дииодтирозина в тирео-глобулине до своб. радикала. Образующиеся в результате синтеза Т. остатки пировиноградной к-ты или серина остаются в составе молекулы тиреоглобулина. [c.590]

    Предложены электроды для огфеделения суммы некоторых аминокислот (тирозин, фенилаланин, триптофан, метионин) в крови, поскольку их содержание является важным диагностическим показателем в клинических анализах. Такие датчики представляют собой катионоселективный электрод, чувствительный к образующимся при ферментативном окислении ионам аммония, на котором иммобилизован слой Ь-аминокислотной оксидазы из змеиного яда. Датчики другого типа регистрируют уменьшение активности ио-дид-ионов на поверхности электрода в результате реакций [c.216]

    Представляет интерес семейство гемоглобинов М. Присутствие такого гемоглобина в крови приводит к серьезным нарушениям выживают только гетерозиготы по данному аномальному признаку. Кровь в этих случаях темная, поскольку железо в половине субъединиц гемоглобина М необратимо окислено до трехвалентного (метгемоглобин). В нормальной крови содержание метгемоглобина не превышает 1%. В норме метгемоглобин восстанавливается специально метгемоглобин-редуктазной системой (дополнение 10-А), тогда как метгемоглобиныМ не восстанавливаются. У всех пяти гемоглобинов М имеются замены в местах, расположенных вблизи гемогруппы. В четырех из них один из гистидинов, связанных с гемом (F-8 или Е-7) либо в а-, либо в. р-субъединице, заменен на тирозин. В пятом валин-67 в р-субъединицах заменен на глутаминовую кислоту. Два гемоглобина М, имеющие замены в а-субъединицах (MBoston и Miwate), заморожены в Т(дезокси)-форме они обладают низким сродством к кислороду и связывают его некооперативно. [c.317]


    Действие глюкокортикоидов приводит в конечном счете к увеличению количества глюкозы, извлекаемой из печени (из-за повышения активности глюкозо-6-фосфатазы), к повышению содержания глюкозы в крови и гликогена в печени, а также к уменьшению количества синтезируемых мукополисахаридов. Процессы включения аминокислот, образующихся в результате распада белков, замедляются, а синтезы ферментов, катализирующих процессы распада белков, усиливаются. Среди этих ферментов тирозин- и аланинаминотрансферазы — ферменты, инициирующие процессы распада аминокислот и обеспечивающие в конечном счете образование фумарата и пирувата — предшественников глюкозы при глюконеогенезе. [c.515]

    В печени широко представлены также защитные синтезы, например синтез мочевины, в результате которого обезвреживается весьма токсичный аммиак. В результате гнилостных процессов, протекающих в кишечнике, из тирозина образуются фенол и крезол, а из триптофона—скатол и индол. Эти вещества всасываются и с током крови поступают в печень, где обезвреживаются путем образования парных соединений с серной или глюкуроновой кислотой. [c.560]

    Нормальная работа организма обеспечивается функциями множества взаимосвязанных генов, и мутация даже в одном из них может иметь самые разные последствия. Так, мутация, в результате которой изменяется активность того или иного фермента, может приводить к накоплению токсичного субстрата или дефициту соединения, необходимого для нормального функционирования клетки, а мутация в гене, кодирующем структурный белок, — к серьезным нарущениям на уровне клеток, тканей или органов. Кроме того, мутация в гене, экспрессирующемся в одной ткани, может сказаться самым серьезным образом на совсем другой ткани и привести к появлению множества симптомов. Например, мутация в гене печеночного фермента фе-нилаланиндегидроксилазы, в результате которой блокируется превращение фенилаланина в тирозин, оказывает серьезное влияние на нервную систему. У индивидуума, гомозиготного по дефектному гену, этот фермент не вырабатьшается вообще или вырабатывается в очень небольших количествах это приводит к повьгшению уровня эндогенного фенилаланина в крови, к неправильному фор- [c.483]

    Токсическое действие. Циановодород вызывает быстрое удушение из-за блокирования дыхательных ферментов и расстройства тканевого дыхания. Так же действуют все цианистые соединения, способные отщеплять НСН и образовывать ион СН . При остром отравлении НСН в первую очередь страдают дыхательный и сосудодвигательный центры (сначала углубление дыхания и повышение кровяного давлегшя, затем паралич дыхания и резкое падение кровяного давления). Цианиды ингибируют окислительное фосфорилирование и энергетические процессы в нервных клетках, а также угнетают ферменты, катализирующие биотрансформацию ряда аминокислот — гистидина, триптофана, тирозина. О резком понижении способности тканей потреблять кислород свидетельствует алая окраска крови в венах. В первый момент отравления решающим является кислородное голодание тканей, в дальнейшем же могут развиваться дегенеративные изменения в ЦНС. При хроническом воздействии НСН в картине отравления важную роль играет угнетение продукции гормона щитовидной железы, вызываемое не пен, а образующимися из него роданистыми соединениями. Чувствительность организма к острому действию цианидов связана с уровнем потребления кислорода при низком его уровне (например, при зимней спячке) резко повышается устойчивость к интоксикации, что связано с понижением температуры тела и повышением резистентности к гипоксии вообще. НСН обладает кожно-резорбтивным действием. [c.513]

    На слое декстран — гель, полученном из сефадекса G25 (стр. 30), проведено фракционирование аминокислот [60], пептидов и протеинов, основанное на различии их молекулярных весов. Разделение тирозина, тирозил-леицил-г лииил-глутамил-фенилаланина, продуктов их конденсации (пластеина) н альбумина сыворотки крови рогатого скота проведено в 0,05 М растворе аммиака.  [c.100]

    Тирозин. Ханке [2811 утверждает, что при правильном проведении диазореакции Паулн она не уступает методу Миллона. С другой стороны, Холидэй [302 и Девайн [1951 нашли, что метод Миллон-Фолина и спектрофотометрический метод дают совпадающие результаты при определении тирозина в казеине, белках крови и т. д. [c.130]

    Фибрин. Хотя некоторые энзимы и вирусы, относительно мало доступные в чистом виде, содержат бошее высокое количество триптофана, чем фибрин, тем не менее фибрин крови является, повидимому, нанлучшим источником для получения триптофана. Данные по содержанию тирозина, полученные Ханке, представляют интерес только как сравнительные, ибо они, повидимому, всегда очень низки. [c.148]

    Адреналин - один из трех гормонов-катехоламинов, синтезирующихся из тирозина в мозговом слое надпочечни-ков,-помогает организму подготовиться к борьбе или бегству путем повышения уровня глюкозы в крови за счет мобили- [c.807]

    В настоящее время в составе глобина обнаружены следующие аминокислоты а) моноаминокислоты — аланин, валин, лейцин, серии, цистин, глютаминовая кислота б) диаминокислоты — аргивин и лизин в) араматические гомоциклические — фенилаланин и тирозин 2) ароматические гетероциклические — триптофан, гистидин, пролин и оксипролин (см. П. А. Кор ж у е в. Эволюция дыхательной функции крови. М.— Л., Изд-во АН СССР, 1949, стр. 27). [c.165]

    Различие между химотрипсином и трипсином состоит также в том, что химотрипсии свертывает молоко, но не свертывает кровь, в то время как трипсин свертывает кровь и не свертывает молоко (в обычных условиях). Так как поджелудочный сок (после активирования его в кишечнике) содержит трипсин и химотрипсин, то в результате их совместного действия белки и пептоны гидролизуются в кишечнике до низкомолекулярных пептидов. Химотрипсин расщепляет с наибольшей скоростью пептидные связи, в образовании которых участвуют карбоксильные группы тирозина, фенилаланина, триптофана или метионина. [c.334]

    Аминокислоты можно получить из природных материалов или приготовить путем химического синтеза. В первом случае обычно получают Ь-изомеры аминокислот аминокислоты, полученные методами химического синтеза (за исключением глицина, р-аланина и т. п.), представляют собой рацематы. Способы выделения аминокислот многообразны, и этому вопросу посвящена весьма обширная литература. Некоторые белки служат хорошим сырьем для получения определенных аминокислот клейковина (глютен) пшеницы служит основным сырьевым материалом для производства Ь-глутаминовой кислоты глютен кукурузы — хороший источник для выделения Ь-лейцина и Ь-тирозина Ь-ар-гинин можно получить из желатины и из крови. Продажные препараты Ь-аспарагина получают из побегов спаржи (ср. [14]). [c.91]

    При фенилкетонурии введение больным фенилаланина приводит к увеличению экскреции фенилпировиноградной кислоты и к повышению содержания фенилаланина в плазме, тогда как прием других аминокислот не вызывает подобных изменений [146, 151, 154, 155]. Одно время предполагали, что при этом заболевании может образовываться D-фенилаланин, поскольку известно, что фенилпировиноградная кислота образуется легче из D-фенилаланина, чем из его L-изомера. Однако в последующих исследованиях D-фенилаланин не был обнаружен ни в крови, ни в моче больных фенилкетонурией [156, 157]. Поэтому предположение, что фенилпировиноградная олигофрения обусловлена рацемизацией или инверсией L-фенилаланина, было отброшено. Напротив, экспериментальное подтверждение получила гипотеза, согласно которой при этом заболевании блокировано превращение фенилаланина в тирозин. Джервис [158] отметил, что в то время, как у здоровых людей после приема фенилаланина увеличивается содержание в крови соединений, реагирующих с реактивом Миллона, у больных, страдающих фенилкетонурией, этого не наблюдается. Юденфренд и Бесман [159] давали таким больным нагрузку С -фенилаланином и получили убедительные [c.477]

    Высказан ряд предположений о химическом механизме, лежащем в основе нарущения психического развития ребенка при фенилкетонурии. Возможно, что фенилуксусная кислота, токсическое действие которой на нервную систему известно [162], или другие продукты обмена фенилаланина вызывают повреждение мозга. Нельзя также исключить возможность вредного действия на мозг самого фенилаланина. С этой точки зрения значительный интерес представляет сообщение о том, что белки крови больных с фенилпировиноградной олигофренией содержат повыщенное по сравнению с нормой количество фенилаланина [163] (см., однако, [164]). Следует также отметить, что фенилаланин может конкурентно угнетать активность тиро-зиназы грибов [165] возможно, что фенилаланин в высоких концентрациях тормозит и другие превращения тирозина в обмене веществ. [c.479]

    В последнее время появились сообщения о лечении больных фенилкетонурией при помощи диеты с низким содержанием фенилаланина при достаточном содержании тирозина [166—169]. У некоторых больных, получавших бедный фенилаланином рацион, было отмечено некоторое повыщение умственных способностей. Весьма вероятно, однако, что этот способ лечения если и дает положительный эффект, то лишь в раннем возрасте, когда еще не развилось стойкое повреждение мозга. Ограничение количества фенилаланина в рационе приводит к значительному снижению фенилкетонурии и уровня фенилаланина в крови. Было предложено использовать для лечения наряду с ограничением приема фенилаланина введение глутамина. Известно, что введенный per os глутамин быстро поступает в мозг и в другие ткани поддержание достаточно высокого уровня глутамина в тканях могло бы способствовать подавлению образования фенилпирувата в тканях [161]. [c.479]

    Гюильбо и Шу [547] исследовали возможность применения электрода на СОг для создания ффментного электрода, селективного к L-тирозину. Они сконструировали датчик на мочевину, в котором используется тот же принцип [547]. СОг-электрод был первоначально разработан физиологами [554, 555] для быстрого определения парциального давления СОг в крови. В этом электроде объединены стеклянный рН-электрод и электрод сравнения с газопроницаемой мембраной. Между стеклянным электродом и газопроницаемой мембраной находится раствор бикарбоната калия. После того как весь датчик помещают в раствор, в котором растворен углекислый газ, молекулы [c.189]


Смотреть страницы где упоминается термин Тирозин см крови: [c.457]    [c.379]    [c.14]    [c.95]    [c.165]    [c.430]    [c.475]    [c.90]    [c.187]    [c.803]    [c.431]    [c.658]    [c.317]    [c.174]    [c.92]    [c.178]    [c.126]    [c.472]    [c.176]    [c.87]    [c.213]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Тирозин

Тирозин тирозин



© 2025 chem21.info Реклама на сайте