Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды стойкость в серной и азотной

    Вулканизаты тиоколов, содержащие 0,5% сшив щего агента, набухают значительно больше ( на 50—100%) [15, с. 115]. Вулканизаты отечественных тиоколов марок I и П, имеющих одинаковую степень разветвленности, также несколько различаются по стойкости к набуханию в растворителях и действию агрессивных сред. Вулканизаты на основе тиоколов марки II меньше набухают в диоксане, дихлорэтане, циклогексаноне и лучше сохраняют свойства после выдержки в разбавленных серной, соляной и азотной кислотах [37]. Такое различие в свойствах объясняется примененной системой отверждения. [c.569]


    Полиэтилен — один из самых распространенных и освоенных промышленностью полимеров, характеризуется высокой стойкостью к воздействию воды и агрессивных сред при температуре до 60 °С. Обладает высокой стойкостью к кислотам, щелочам, многим окислителям и растворителям. Практически не действуют на полиэтилен жиры, масла, керосин и другие нефтяные углеводороды. Фосфорная, соляная и фтористоводородная кислоты в любых концентрациях не оказывают на полиэтилен заметного действия. Однако серная и азотная кислоты при температурах выше 60 °С быстро его разрушают. [c.122]

    Сплав олово — никель. Покрытие сплавом олово — никель, содержащее 65% 5п, обладает высокой химической стойкостью по отношению ко многим агрессивным средам разбавленным серной и соляной, концентрированной азотной кислотам, растворам хлористого натрия и в условиях 100%-ной влажности [167, 185]. Коррозионные испытания в условиях промышленной атмосферы [185] показали, что сплав, осажденный с подслоем меди, обладает значительно большей коррозионной стойкостью, чем никелевое покрытие. Следует отметить, что оловянно-никелевое покрытие, нанесенное без подслоя меди, в атмосферных условиях не предохраняет сталь от коррозии. [c.51]

    Фторопласт-3 обладает высокой химической стойкостью (в пределах указанных температур) к действию следующих агрессивных сред кислот серной, соляной и азотной всех концентраций, царской водки, концентрированных растворов щелочей, окислителей и др. [c.136]

    Фторопласт-3 обладает высокой химической стойкостью в таких агрессивных средах, как серная, соляная, азотная кислоты всех концентраций, царская водка, концентрированные растворы щелочей, окислители и др. [c.432]

    Так как коррозионная стойкость хромистой стали зависит от пассивирующего свойства хрома, то эта сталь обладает стойкостью лишь в таких средах, которые способствуют образованию защитных пленок. Если же среда препятствует образованию пленки или ионы агрессивной среды (например, ионы хлора) настолько малы, что могут проникать через поры пленки, то хромистая сталь разрушается. Так, в азотной кислоте любой концентрации и концентрированной серной кислоте, в воздухе, в парах воды, в большинстве органичес- [c.58]

    Высокохромистый чугун обладает высокой химической стойкостью в ряде агрессивных сред в азотной, серной, фосфорной кислотах, в растворах щелочей, солей, морской воде и др. Высокая коррозионная стойкость высокохромистого чугуна объясняется тем, что хром (в пределах 15—30%) образует пассивирующую пленку. [c.138]


    Кроме работ по исследованию коррозионной стойкости отдельных тугоплавких металлов в самых различных агрессивных средах (основные результаты этих работ приведены выше), проводились также работы, целью которых бьшо сопоставление коррозионной стойкости тугоплавких металлов. При этом в качестве агрессивных сред использовали основные промышленные кислоты серную, соляную, азотную и фосфорную. [c.52]

    Результаты большинства исследований подтверждают, что в средах, в которых тантал абсолютно стоек (скорость коррозии менее 0,01 мм/год), сплавы, с содержанием ниобия до 50 мас.% также устойчивы против коррозии. Их коррозионная стойкость соответствует нормам 1 балла (скорость коррозии менее 0,1 мм/год). К таким средам относятся кипящие растворы серной, азотной, соляной и фосфорной кислот, растворы щелочей, влажный хлор и его соединения и другие агрессивные среды. [c.78]

    Винипласт обладает высокой химической стойкостью при 20 °С в таких агрессивных средах, как азотная кислота (50—60%), аммиак (водный, газообразный), фосфат, бензин, борная кислота (разбавленный и насыщенный раствор), вода (обычная, морская, сточная), лимонная кислота (до 10% и насыщенный раствор), серная кислота (до 96%К соляная кислота (свыше 30%) при 40°С в средах азотная кислота (до 50%), аммиак (водный раствор и газообразный), бензин, борная кислота (разбавленный и насыщенный раствор), вода (обычная, морская, сточная), лимонная кислота (до 10% и насыщенный раствор), олеиновая кислота, серная кислота (до 40%, 40—80%, 80—90%), соляная кислота (свыше 30%) при 60°С в средах бензин, лимонная кислота (насыщенный раствор), серная кислота (40—80%), соляная кислота (свыше 30%). [c.122]

    Алюминий обладает высокой стойкостью во многих коррозийных средах (азотной, уксусной и разбавленной серной кислотах при комнатной температуре, в нафтеновых кислотах, сухом и влажном сероводороде и других агрессивных средах), но плохо противостоит соляной кислоте, растворам щелочей, аммиака и др. [c.36]

    Титан и его сплавы находят все большее применение как конструкционные или облицовочные материалы, обладающие высокой коррозионной стойкостью во многих сильных агрессивных средах (азотной кислоты, нитритов, нитратов, хлоридов, сульфидов, фосфорной и хромовой кислот, органических кислот и мочевины). Однако титан разрушается в серной, соляной и плавиковой кислотах, а также в азотной кислоте, содержащей оксиды азота. [c.13]

    Покрытия на основе ХСПЭ, отвержденные ароматическими диаминами, обладают высокой стойкостью в газообразных и жидких агрессивных средах. Так, в покрытиях по бетону образцы не изменили внешнего вида после выдержки в течение 180 сут в парах азотной, соляной, серной и уксусной кислот [5, 14]. В покрытиях по металлу образцы показали высокую стойкость в агрессивных средах, но только при комнатной температуре. Это связано, по-видимому, с ухудшением адгезии покрытия к металлу при повышении температуры [25, 26] и значительным увеличением скорости диффузии агрессивных сред (в особенности воды) при повышенной температуре. Тем не менее, при 20 °С покрытия на основе ХСПЭ, отвержденные ароматическими диаминами, стойки в таких средах, как 20%-ные соляная и азотная кислоты, 80%-ная и 60%-ная серная кислота, 30%-ная перекись водорода, 40%-ная плавиковая кислота, 85%-ная фосфорная кислота, 40%-ный и 10%-ный раствор едкого натра, насыщенный раствор перманганата калия, изопропиловый спирт, 10%-ная уксусная кислота и 37%-ный формальдегид [26]. Покрытия на основе ХСПЭ, отвержденные ж-фенилендиамином, обладают хорошей атмосферостойкостью, превосходя в этом отношении другие композиции на основе ХСПЭ. [c.166]

    Покрытия из смеси ХСПЭ с фенолоформальдегидными смолами имеют наилучшую стойкость в агрессивных средах в тех случаях, когда содержание смолы не превышает 30—40 масс. ч. на 100 масс. ч. ХСПЭ. Такие покрытия отличаются низкой диффузионной проницаемостью и высокой стойкостью к таким агрессивным средам, как, например, 20%-ная и 30%- ая азотная кислота, 20%-ная и 37%-ная соляная кислота, 60%-ная серная кислота [5]. [c.174]

    Кроме водо- и бензостойкости, очень важной характеристикой полимеров является их стойкость к действию различных агрессивных сред, например концентрированных кислот (азотной, серной). В этом отношении наиболее стойки поливинилхлорид, и в особенности политетрафторэтилен. [c.342]


    Коэффициенты стойкости стеклонаполненного полипропилена в агрессивных средах изменяются очень незначительно. С повышением температуры действие сред на свойства полипропилена усиливается. Так, если коэффициенты стойкости полипропилена по разрушающему напряжению при растяжении при 20 °С в азотной и 98%-ной уксусной кислотах составляли 93—96% (см. табл. III.13), то при 90°С за 5 сут они понизились до 5% и менее в азотной и до 15% в уксусной кислотах [76, с. 140— 144]. Для стеклонаполненного полипропилена при повышении температуры до 80 °С коэффициент стойкости понизился в соляной кислоте на 14%, в гидроксиде аммония на 4%, в этиленгликоле на 11%, т. е. не очень сильно, но в бензине — на 34% [44]. Интересные результаты были получены для воды и растворов серной кислоты [81, [c.65]

    В разбавленных (до 10%) азотной, серной и соляной кислотах их коэффициенты стойкости составляют Кц = = 72—77%, /Ств = 77—85% (при увеличении концентрации кислоты твердость несколько возрастает). Показатели свойств для стеклонаполненных полиуретанов в этих кислотах несколько выще /Ср = 81—85% без нагружения и 80—85% под нагрузкой, т. е. приложение нагрузки не влияет на изменение прочности полиуретанов в агрессивных средах. В концентрированных кислотах полиуретаны разрушаются. [c.105]

    Испытания пентапласта в агрессивных средах — в хлор и фторорганических производствах показали его стойкость при 20—27 С в азотной кислоте (60%-ной), перхлорэтилене, едком натре (40%-ном), серной кислоте (92%-ной), серной кислоте (до 96%-ной) после очистки хлороформа (3% органических веществ), соляной кислоте абгазной с производства хлораля, соляной кислоте абгазной с производства фреонов, смеси фтористоводородной (40,2%-ной) и соляной (12,8%-НОЙ) кислот производства фреонов, трихлоруксусной кислоте-сырце и ректификате, фтористоводородной кислоте (40%-ной), фреоне-113, хлорале, кремнефтористоводородной (до 45%-ной), фтористоводородной (до 75%-ной). [c.272]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Испытания пентапласта в агрессивных средах катализаторных производств показали его стойкость при 20 °С в смеси соляной и азотной концентрированных кислот (I 1), 35%-ной хромовой кислоте, 35%-ном нитрате хрома при 20—60 °С в 30%-ной серной кислоте, 70%-ной серной кислоте, влажной смеси окислов азота, 30%-ной азотной кислоте, растворах нитратов редкоземельных элементов (от слабых до концентрированных), концентрированном медноаммиачном рас- [c.272]

    Стойкость системы Ф-4 — стеклопластик при диффузии через защитный слой агрессивных сред не изучена. Поэтому нами исследовано поведение связующего — эпоксидной смолы (ЭС) ЭД-20 (отверждение полиэтиленполиамином при 120°), изолированной от азотной (30—57% вес.) и серной (94%) кислот слоем Ф-4 толщиной 0,1—1 мм. [c.73]

    Резина на основе бутилкаучука ИРП-1256 обладает исключительно высокой химической стойкостью и универсальностью она хорошо стоит даже в такой агрессивной среде, как 30%-ная азотная кислота, при 50° С. По своей химической стойкости в ледяной уксусной и концентрированной фосфорной кислотах при 70° С, уксусном ангидриде до 50° С, 33%-ной серной кислоте и концентрированной щелочи при температурах до 110°С эта резина значительно превосходит все ранее известные резины. Резины на основе наирита и бутилкаучука рекомендуются в качестве уплотнителей, сальников и прокладок. [c.264]

    При выборе материала, наиболее пригодного для перекачки данной среды, необходимо учитывать следующее 1) резкое изменение стойкости сплава при самом незначительном изменении его состава 2) зависимость стойкости кислотоупорного сплава не только от химического состава, но и от способов изготовления 3) резкое изменение (обычно — повышение) химической активности перекачиваемой жидкости в случае содержания в ней примесей (например, незначительная примесь соляной кислоты в серной или азотной кислоты в уксусной резко увеличивает агрессивность среды). В ряде случаев такой примесью оказывается воздух, проникающий в насос через сальник. [c.35]

    Поливинилхлорид обладает большой химической стойкостью. Образцы из поливинилхлорида -после трехмесячной обработки при 20° С серной и азотной кислотами, едким натром, этиловым спиртом и водой не изменяют прочностные свойства 241 поэтому поливинилхлорид широко используют в химической промышленности для изоляции трубопроводов от воздействия хлора 242 соляной и серной кислот з и других агрессивных сред 1244-1246 облицовки химических аппаратов >247-1250 футеровки цистерн и резервуаров >251, 1252. Описано применение поливинилхлорида для изготовления бачков, трубок, ванночек и других изделий, стойких к агрессивным средам кислотоустойчивых фильтров >254 ц даже целых установок непрерывной нейтрализации и обезвреживания кислых, хромсодержащих и циансодержащих сточных вод 255. В ракетостроении поливинилхлоридные компо- [c.509]

    Стали устойчивы в азотной кислоте концентрации до 55% при температуре до 55° С, в контактной 98%-ной серной кислоте при температуре 50—70° С, синтетической мочевине концентрации 55— 65% при температуре 110° Сив ряде других агрессивных сред. Стали показывают высокую стойкость против межкристаллитной коррозии как в состоянии поставки (после закалки с 1000° С), так и после различных провоцирующих нагревов в интервале 550—750° С, а также высокую сопротивляемость коррозионному растрескиванию. Сварные соединения, выполненные аустенит-ными электродами, также стойки против межкристаллитной коррозии [c.77]

    Полиэтилен имеет высокие термические коэффициенты линейного и объемного расширения. При его охлаждении происходит очень большая усадка, достигающая 15—16% от первоначального объема изделия при охлаждении от 115 до 20°С. Относительное удлинение при разрыве достигает 600 и даже 900%. Обладает высокой химической стойкостью к различным агрессивным средам. При комнатной температуре (15—20"С) па него практически не действуют соляная и фтористоводородная кислоты любой концентрации и серная кислота при концентрации до 94%. В концентрированной азотной кислоте разрушается. [c.321]

    Ряд процессов, например водное хлорирование, а также процессы со средами, в которых содержатся кислородные соединения хлора, не могут быть осуществлены без аппаратов или их отдельных деталей, изготовленных из титана. В этих средах скорость коррозии титана не превышает 0,01 мм1год. В значительно большей степени применяют технически чистый титан мap ки ВТ1-1 и мало-легированный титановый сплав марки 0Т4, из которых изготовляют теплообменники, колонные аппараты, резервуары, подогреватели и другие аппараты. ВТГ-1 в контакте со многими сплавами и металлами в большинстве агрессивных сред (за исключением азотной и серной кислот) является катодам и спосо1бствует убыстрению коррозии металла, контактирующего с ним. Коррозионная стойкость сплава марки ОТ-4 в некоторых средах ниже, чем титана мap ки ВТ1-1. [c.24]

    Высокохромистые чугуны склонны к крупнокристаллическому излому и к образованию зон транскристаллизации при высокой температуре заливки металла в форму, что значительно уменьшает прочность отливок. При заливке холодным металлом излом получается мелкозернистым, но жидкотекучесть сплавов при этом уменьшается. Крупнозернистая структура сплавов не может быть улучшена термической обработкой, так как высокохромистые чугуны имеют ферритную основу и не претерпевают превращений в твердом состоянии при нагреве и охлаждении. Улучшения структуры можно достичь дополнительным введением легирующих элементов. Введение марганца в количестве от 2 до 3% измельчает структуру высокохромистого чугуна и одновременно повышает его химическую стойкость в ряде агрессивных сред (20%-ная азотная кислота пэи кипении, 1%-ная серная кислота, 85%-ная фосфорная кислота). Обрабатываемость резанием при этом не изменяется. Прочность при изгибе увели1.и-вается. [c.312]

    Высокая стойкость к тепловому старению, исключительная стойкость к действию разнообразных растворителей, гугасел и топлив при повышенных температурах являются характерной особенностью фторсодержащих каучуков. Вулканизаты фторкаучуков обладают высоким сопротивлением истиранию и стойкостью к агрессивным средам —щелочам, сильным окислителям (дымящей серной кислоте, азотной кислоте, концентрированной перекиси водорода, озону). [c.115]

    Нержавеющий (аустенитный) чугун благодаря однофазной структуре обладает высокой химической стойкостью во многих агрессивных средах. Так, он обладает повыщениой стойкостью (в 5—10 раз по сравнепию с серым обычным чугуном) в серной, муравьиной, уксусной кислотах, в каустической соде, в ряде щелочных сред, в морской воде, однако менее стоек в соляной и быстро разрушается в азотной кислоте. Аустенитный чугун также достаточно прочен, износоустойчив, обладает хорошими технологическими свойствами. [c.137]

    Свойства вулканизатов. Механич. свойства вулканизатов X. к. определяются типом полимера (табл. 1). Кристаллизация X. к. обусловливает высокую прочность при растяжении ненаполненных вулканизатов на их основе. Наиболее важные специфич. свойства резин из X. к.— масло-, бензо-, озоно-, свето-, тенло-и огнестойкость. Резины сравнительно стойки в нек-рых к-тах (напр., борной, соляной, разб. серной), щелочах, однако под действием азотной, хромовой, конц. серной к-т, а также сероуглерода, серного ангидрида, перекисей (напр., перекиси водорода) и газообразного хлора они разрушаются. Характеристики стойкости резин в нек-рых агрессивных средах и их сопротивления озонному старению приведены в табл. 2, 3. [c.417]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]

    На рис.1,2 представлены графические зависимости изменения прочности пентадласта при старении в агрессивных средах. Как сяедует из рисунков, пенташйют обладает сравнятаяьно высокой химической стойкостью в растворах с содержанием до 30 соляной, до 70 серной, а также до 10 азотной кислот. [c.41]

    Металлический тантал более устойчив по отношению к различным реагентам при повышеннойтемпературе, чем ниобий. Соляная, азотная и разбавленная серная кислоты, а также царская водка не оказывают на него никакого действия даже при нагревании. Концентрированная Н2504 и НР медленно растворяют тантал вьш1е 150°. Он хорошо противостоит действию слабых растворов едких щелочей, однако концентрированные растворы их и расплавленные едкие щелочи заметно корродируют его. В табл. 11 приведена коррозионная стойкость тантала в различных агрессивных средах. Порошкообразный тантал легко соединяется с фтором будучи нагрет в атмосфере хлора горит, образуя пентахлорид. Образует химические соединения с рядом других элементов — металлов и неметаллов А1, Б, Ое, Ре, Со, 81, N1, 8п, Pt, Не, рь, Р, Сг, 2т. [c.54]

    Фторопласт-3 отличается высокой химической стойкостью. Он стоек (не изменяется совсем или набухает меньше, чем на 1%) к действию многих агрессивных сред кислот [азотной, плавиковой, серной, олеума (до 65%-ного), соляной, фосфорной, хлорной, хромовой, царской водки], растворов щелочей, окислителей (перекиси водорода, озона, дымящей азотной кислоты, хромовой смеси, перманганата калия), брома, газообразного фтора и хлора. Как и фторопласт-4, он раз-рущается при действии расплавленных щелочных металлов или их паров при высокой температуре, [c.181]


Смотреть страницы где упоминается термин Агрессивные среды стойкость в серной и азотной: [c.41]    [c.67]    [c.366]    [c.584]    [c.627]    [c.648]    [c.306]    [c.367]    [c.164]    [c.78]    [c.367]   
Коррозионная стойкость материалов (1975) -- [ c.0 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.0 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Агрессивные азотная

Агрессивные серная



© 2025 chem21.info Реклама на сайте