Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зеленые растения

Рис. 21.14. Упрощенная схема кругооборота кислорода в природе с указанием некоторых про-стейщих реакций с его участием. Важнейшим источником кислорода служит земная атмосфера. Часть О2 образуется в верхних слоях атмосферы в результате диссоциации Н2О под действием солнечного излучения. Часть О, выделяется зелеными растениями в процессе фотосинтеза из Н2О и СО2. В свою очередь атмосферный СО2 образуется в результате реакций горения, дыхания животных и диссоциации бикарбонат-иона в воде. Атмосферный О2 расходуется на образование озона в верхних слоях атмосферы, окислительные процессы выветривания горных пород, в процессе дыхания животных и в реакциях горения. Рис. 21.14. <a href="/info/1472997">Упрощенная схема</a> <a href="/info/1486429">кругооборота кислорода</a> в природе с <a href="/info/655370">указанием некоторых</a> про-стейщих реакций с его участием. <a href="/info/1514093">Важнейшим источником</a> кислорода служит <a href="/info/861085">земная атмосфера</a>. Часть О2 образуется в <a href="/info/1055830">верхних слоях атмосферы</a> в результате диссоциации Н2О под <a href="/info/411763">действием солнечного</a> излучения. Часть О, выделяется зелеными растениями в <a href="/info/526428">процессе фотосинтеза</a> из Н2О и СО2. В свою очередь атмосферный СО2 образуется в <a href="/info/71789">результате реакций</a> горения, дыхания животных и <a href="/info/331357">диссоциации бикарбонат</a>-иона в воде. Атмосферный О2 расходуется на <a href="/info/3345">образование озона</a> в <a href="/info/1055830">верхних слоях атмосферы</a>, <a href="/info/8204">окислительные процессы</a> <a href="/info/1178847">выветривания горных пород</a>, в <a href="/info/584718">процессе дыхания</a> животных и в реакциях горения.

    Общая реакция фотосинтеза в зеленых растениях обратна реакции сгорания глюкозы  [c.335]

    Полная реакция фотосинтеза в зеленых растениях описывается уравнениями  [c.597]

    Комплексные соединения широко распространены в природе, играют важную роль в биологических процессах. Достаточно упомянуть гемоглобин крови (комплексообразователь Ре +) и хлорофилл зеленых растений (комплексообразователь Mg + ), витамин В12 (комплексообразователь Со + ). Комплексные соединения и комп-лексообразование находят самое разнообразное практическое применение. Образование комплексов используется при умягчении жесткой воды и растворении камней в почках важнейшую роль играют комплексные соединения в химическом анализе, производстве металлов и т. д. [c.76]

    Фотосинтез в зеленых растениях [c.983]

    Растворенный кислород. Растворимые в воде газы определяются при характеристике воды на коррозийные свойства по отношению к металлу и бетону, а также в воде, используемой в паросиловом хозяйстве. Кислород попадает в воду из воздуха, а также может образоваться в результате жизнедеятельности зеленых растений, населяющих близкие к поверхности слои воды. Растворимость чистого кислорода, выделяемого зелеными растениями, в пять раз больше, чем растворимость кислорода из воздуха, в котором содержание этого газа составляет лишь 21%, так как растворимость кислорода в воде обусловливается его парциальным давлением. [c.133]

    Вода расщепляется на элементы, что создает источник атомов водорода для восстановления СО2 в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовались не вода, а сероводород, Н28, органические вещества или сам газообразный водород, но легкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелеными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением О2, являются сине-зеленые водоросли. Их правильнее называть современным названием цианобактерии, поскольку это в самом деле бактерии, научившиеся добывать собственную пищу из СО2, Н2О и солнечного света. [c.335]

    В чем заключается большое влияние, которое оказал фотосинтез в зеленых растениях на атмосферу нашей планеты  [c.344]


    Фотосинтез в зеленых растениях. При процессе ассимиляции или фотосинтеза в зеленых растениях СО2 и вода превращаются в углеводы и молекулярный кислород, причем необходимую для этих процессов энергию дает свет  [c.982]

    Фотосинтез осуществляют все зеленые растения, сине-зеленые водоросли и некоторые группы бактерий. Существует вполне определенное соответствие между спектром поглощения отдельными элементами растений и спектром излучения Солнца. Реакция фотосинтеза имеет большую эффективность от 30 до 60% поглощенной энергии используется для образования углеводов и кислорода. [c.189]

    Вследствие количественного преобладания и большой окислитель-10Й активности кислород предопределяет форму суш,ествования на Земле всех остальных-элементов. Его значение было особенно велико з период образования земной коры. Предполагается, что наличие ислорода в атмосфере обусловлено вторичными процессами — деятельностью зеленых растений. [c.310]

    Для жизни растений непрерывно требуется диоксид углерода - побочный продукт дыхания животных. С помощью фотосинтеза в зеленых растениях диоксид углерода соединяется с водой, образуя в результате глюкозу и газообразный кислород (этот вопрос обсуждался в гл. IV). Таким образом, фотосинтез и дыхание уравновешивают друг друга - и концентрация кислорода в атмосфере остается постоянной (рис. VI.2), [c.372]

    Фотосинтез Природный процесс, в котором зеленые растения и водоросли образуют углеводы из диоксида углерода м воды под действием света [c.549]

    Что же заставило атмосферу измениться столь существенным образом По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии, фотосинтеза, который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоемких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зеленых растений. Сегодня все живые организмы можно подразделить по метаболизму на две категории те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Поскольку организмы второй категории существуют за счет поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на земле. [c.334]

    Важнейшим процессом этого типа является идущий в зеленых растениях процесс фотосинтеза — синтеза из углекислого газа и воды различных органических соединений, например глюкозы  [c.242]

    У зеленых растений трансформация энергии происходит на мембранах тилакоидов хлоропластов, а у фотосинтезирующих бактерий— на мембранах хроматофоров. Увеличение ионной проводимости мембран приводит к рассеиванию энергии в виде теплоты, а разрушение мембран — к полной потере способности к аккумуляции энергии. [c.160]

    Химические реакции, протекающие под воздействием света, называются фотохимическими, а сам раздел физической химии, занимающийся их изучением, получил название фотохимии. Примеров фотохимических реакций можно привести очень много. Так, смесь газов водорода и фтора на свету взрывается, аммиак разлагается на водород и азот, бромид серебра разлагается с выделением металлического серебра, что широко используется в фотографии, процесс отбелки тканей кислородсодержащими соединениями хлора также протекает под воздействием света и т. д. К числу фотохимических процессов относятся и реакции фотосинтеза, в результате которых в зеленых растениях из оксида углерода (IV) и воды образуются различные органические соединения, главным образом углеводы. [c.172]

    Фотосинтез— один из важнейших процессов в биосфере продуктом его являются практически все природные органические соединения. Под действием света, поглощаемого пигментом зеленых растений хлорофиллом, происходит в конечном итоге образование глюкозы СвН 20д и кислорода из диоксида углерода и воды. Согласно полному уравнению фотосинтеза [c.32]

    Химические реакции тесно связаны с такими физическими процессами, как электрические явления, теплопередача, поглощение или излучение электромагнитных колебаний. Например, химические реакции, протекающие в гальванических элементах и аккумуляторах, являются причиной возникновения электрического тока. Многие химические реакции сопровождаются выделением или поглощением энергии в виде теплоты, а возникновение других реакций обусловлено действием света. Так, поглощение солнечного света зелеными растениями вызывает сложные реакции фотосинтеза, в результате которых из двуокиси углерода и воды образуются различные органические соединения. Таким образом, физическая химия решает наиболее общие вопросы химии, опираясь на физические законы и методы исследования. [c.5]


    Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву часть его постепенно выделяется в свободном виде. [c.441]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Но, с другой стороны, живые организмы являются системами открытыми, поэтому, используя энергию обмена, могут сами заряжаться до более высокого потенциала и с этой точки зрения имеет место противоречие второму началу термодинамики. Так, зеленые растения для повышения энергетического потенциала используют солнечную энергию, а животные — энергию, поступающую с пищей. Таким образом, хотя энтропия самого организма может изменяться в любом направлении, т. е. она может уменьшаться за счет непрерывного поглощения свободной энергии из окружащей среды, энтропия системы организм — среда, взято в целом, несомненно увеличивается. Это дает основание для общего вывода длж живых организмов, как и для тел неживой природы, полностью выполняются законы термодинамики. [c.75]

    Кислород, содержащийся в атмосфере Земли, имеет биогенное происхождение, т. е. также является продуктом фотосинтеза зеленых растений. Расчет показывает, что растениями ежегодно возвращается в атмосферу около 4,7-10 т газообразного кислорода. [c.176]

    Фотосинтез, протекающий в зеленых растениях, может быть подразделен на процессы двух типов фотореакции и синтетические реакции (или, как их принято называть, световые и темиовые реакции). В результате темповых реакций СО2 восстанавливается в глюкозу с использованием атомов водорода из молекулы НАДФН (НАДФ" -это НАД" с фосфатной группой вместо одной рибозной группы —ОН) и энергии от молекулы АТФ  [c.335]

    При фотосинтезе лучистая энергия солнца преобразуется в химическую и в виде потенциальной энергии находится в растительной органической массе — продукте фотосинтеза. Подсчитано, что за год жизнедеятельности зеленых растений в этой массе связывается такое количество солнечной энергии, сколько могли бы дать при непрерывной работе 200 ООО таких громадных ГЭС, как Куйбышевская (ее мощность — 10 квт-ч/год). [c.145]

    Органические соединения особенно важны тем, что являются конструктивным и энергетическим материалом животных и растительных организмов. Источниками их получения служат прежде всего растительные и животные организмы — своеобразные химические лаборатории, в которых протекает множество сложнейших реакций. Так, в зеленых растениях исходные вещества для синтеза — простейшие соединения (СОз и минеральные соли). Животные организмы для жизнедеятельности получают в готовом виде довольно сложные органические соединения (углеводы, жиры, белки), синтезированные растениями. В организме человека и животных преобладают окислительные процессы, приводящие в конечном счете к превращению химической энергии в тепловую и образованию простейших конечных веществ, в основном оксида углерода (IV) и воды. Азот выделяется в составе мочевины. Огромное количество органических веществ получают из древесины, торфа, горючих сланцев, [c.86]

    Кроме того, газообразный кислород смешивается с водой в результате аэрации, которая происходит, если вода падает с плотин, перетекает через валуны и другие препятствия, образуя в результате водо-воздушную пену . Газообразный кислород попадает в природные водоемы в результате фотосинтеза - процесса, при котором зеленые растения у океанский планктон синтезируют углеводы из диоксида углерода и воды пря н.шичии солнечного света. В дневные часы водные зеленые растения постоянно синтезируют сахара. При этом также получается газообразный кислород, который выделяется из водных растений в окружающую воду. Суммарное химическое уравнение, описывающее образование глюкозы ((Ь5Н1205) и кислорода при фотосинтезе, может быть представлено следующим образом  [c.58]

    Глюкоза производигся зелеными растениями в ходе фотосинтеза, описываемого следующим пбш ш уравнением  [c.245]

    Видимый свет и eeт более высокую энергию (частота около 10 Гц) и может возбуждать мектроны некоторых химический связей. Один фотон передает энергию одному электрону одной связи. Такое их взаимодействие, между прочим, происходит в двойных связях определенных молекул ваших глаз, давая вам возможность прочесть то, что здесь напечатано. Видимый свет взаимодействует и с молекулами хлорофилла в зеленых растениях. [c.397]

    Сахар глюкоза, образующийся в листьях зеленых растений, относится к числу углеводов. Название углеводы связано с прошлыми неверными представлениями о структуре этих соединений. Формулу глюкозы, СбН120 , можно записать в виде (С-Н20)б. Вещества, формулы которых могут быть представлены равными количествами углерода и воды, в свое время получили название углеводов . [c.308]

    Рнеорг" неорганический фосфат). Первая реакция сама по себе не является самопроизвольной, так как она требует затраты свободной энергии в 226 кДж на моль глюкозы, однако необходимая свободная энергия поставляется второй реакцией, и в целом процесс является самопроизвольным с движущей силой 322 кДж. Темповые реакции небезразличны к источнику молекул НАДФ Н и АТФ, которые требуются для их протекания. Хотя в настоящее время их источником в зеленых растениях являются световые реакции, не исключено, что темповые реакции старше по возрасту и первоначально приводились в действие молекулами НАДФ Н и АТФ из других источников. Механизм темновых реакций известен под названием цикла Кальвина-Бенсона и в некотором смысле аналогичен циклу лимонной кислоты. Сначала диоксид углерода соединяется с молекулой-перенос-чиком, рибулозодифосфатом. После ряда стадий (некоторые из них вы- [c.335]

    Световые реакции получения АТФ и НАДФ Н, которые используются в качестве движущей силы темновых реакций. Солнечный свет был наиболее распространенным и доступным источником энергии в первобытную эру и остается им и в наше время. Побочным продуктом световых реакций в зеленых растениях является свободный кислород, О2, который выделяется в атмосферу более миллиарда лет и постепенно изменил ее, превратив из восстановительной в такую, которая существует в настоящее время и содержит 20% свободного кислорода. [c.336]

    Известно, что в составе буровых растворов содержится значительное количество компонентов, загрязняющих деятельный почвенный слой. При их попадании в почву происходит разрушение хлорофилла у зеленых растений, за счет че 0 резко снижается поглощение ими солнечной энергии. В результате этого прекращается фотосинтез и уменьшается ппояуктияность ппчпенно-пястчтельного покрова. [c.78]

    Полагают, что иребиотическая, или примитивная, атмосфера Земли в период происхождения жизни обладала сильно восстановительными свойствами кислород в атмосфере отсутствовал. Свободный кислород появился много позднее, в основном как продукт фотосинтеза, проводимого зелеными растениями [42], Эта восстанавливаюи1ая атмосфера содержала такие газы, как СН , МНз, N2, СО, СО2, Н2 и водяные пары. Сейчас существует много доказательств того, что реакции между этими молекулами и неорганическими компонентами протекали под воздействием энергии ультрафиолетовых лучей, электрических разрядов, тепловой, радиации, а также других форм энергии, таких, как ударные волны. [c.181]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    Ранее предполагалось, что описанный выше процесс полимеризации формальдегида до сахаров имеет также значение с физиологической точки зрения и что аналогичным образом происходит образование углеводов при процессах ассимиляции в зеленых растениях (Байер, Вильштеттер и Штолль, Варбург). Однако в настоящее время считают, что при быстром фотосинтезе в качестве одного из первоначальных продуктов реакции образуется фосфоглицериновая кислота Н20зР0СН2СН(0Н)С00Н (Кальвин), из которой в растениях получаются углеводы (стр. 984) [c.212]

    До сих пор установлено существование двух природных витаминов К. Один из них, витамин К , или филлохинон, содержится в зеленых растениях и был впервые выделен из Л//а//а (Каррер) второй, витамин Кг, содержится в бактериях, и его удалось выделить из гниющей рыбьей муки (Дойзи). [c.901]

    Важнейшим процессом этого тина является идущий в зеленых растениях ироцесс фотосинтеза — синтеза из двуокиси углерода и воды разлнчтн х органических соединений, наиример глюкозы  [c.254]

    Предварительная работа. Раствор хлорофил-л а Свежесорванные листья зеленого растения (шпината или другие) вместе с кварцевым песком тщательно растирают в фарфоровой ступке. Полученную растительную кашицу заливают раствором, состоящим из смеси 45 мл высококачественного бензина, 5 мл бензола и 15 мл метилового спирта, и оставляют в темном месте в течение примерно часа для взаимодействия, периодически [c.217]

    Опыт показывает, что иногда фотохимические процессы осуществляются под действием излучения, хотя оно совершенно не поглощается реагирующими веществами. Казалось бы, в данном случае имеет место отступление от закона Гроттуса. Однако исследования показали, что эти реакции происходят только тогда, когда п реагирующим веществам примешиваются некоторые посторонние примеси, которые, поглощая световую энергию, передают ее затем реагирующим веществам. Эти примесные вещества получили лазванпе сенсибилизаторов. Механизм действия сенсибилизаторов состоит в том, что молекула сенсибилизатора при поглощении фотона переходит в возбужденное состояние, а затем, столкнувшись с молекулой реагирующего вещества, передает ей избыток своей энергии, вызывая тем самым химическое превращение. Примеров сенсибилизированных реакций можно привести очень много. Так, путем добавления к фотоэмульсии некоторых веществ, выполняющих роль сенсибилизатора, можно значительно повысить ее чувствительность к красным лучам света. Известный всем хлорофилл также является сенсибилизатором фотохимических реакций образования органических веществ в зеленых растениях. [c.175]

    Из всех известных в природе фотохимических ироцессов наиболыыее. значение имеет фотосинтез. Основоположником учения о фотосинтезе является К. А. Тимирязев. Фотосинтез является основой существования всего живого на земле. Фотосинтез зеленых растений — это единственный первоисточник накопления органического вещества на Земле, которое служит для питания человека и животных. Вся растительность земного шара создает ежегодно около 120 млрд. т органического вещества, из них примерно 10 млрд. тонн производит человек, выращивая на площади около 2,5 млрд. га пищевые и кормовые растения. [c.175]

    Таким образом, Тимирязев показал, что именно хлорофилл является поглотителем света в зеленых растениях и что этот пигмент, поглощая квагггы света, обладает способностью передавать их далее молекулам веществ, являющихся ис-ходнымн при фотосинтезе. При этих реакциях хлорофилл испытывает обратимое окислительно-восстановительное превращение. Структура молекулы хлорофилла показана ниже  [c.176]

    Необходимую для жизнедеятельности энергию они получают или при фотосинтезе (усвоение углекислоты зелеными растениями и пурпурными серными бактериями), или хемосинтезе — путем окисления аммония, серы, нитритов, солей железа (П) и т. д. К ним относятся нитрифицирующие бактерии, железобактерии, бесцвет пые серные бактерии и тионовокислые. [c.255]

    Комплексные соединения широко распространены в природе. Достаточно оказать, что такие жизненно важные вещества, как гемоглобин, хлорофилл, инсулин, энзимы, некоторые витамины и т. п., представляют собой координациовные соединения. Основной составной частью хлорофилла зеленых растений является а-хлорофилл (см. стр. 77). Наконец, не подлежит сомнению исключительная важность координационных соединений для аналитической химии. [c.15]

    Железо входит в состав живых организмов, пграя в них очень важную роль биоакатализаторов. Гемоглобин крови содержит железо в виде сложного органического соединения. Интересно, что это соединение по своей природе очень близко хлорофиллу зеленых растений — с той разницей, что в состав последнего вместо Ре входит Mg. Однако, несмотря на это, хлорофилл в отсутствие железа не образуется. Роль гемоглобина крови и хлорофилла в растениях исключительно велика. Поэтому железо совершенно необходимо для жизни растений, животных и человека. [c.546]


Смотреть страницы где упоминается термин Зеленые растения: [c.97]    [c.43]   
Общая микробиология (1987) -- [ c.10 , c.12 , c.274 , c.360 , c.392 , c.403 ]




ПОИСК







© 2025 chem21.info Реклама на сайте