Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий, электронная конфигурация

    Следующий элемент, бериллий, имеет два валентных электрона, причем оба они занимают 25-орбиталь, если атом находится в нормальном состоянии. Нормальный атом бериллия имеет электронно-точечный символ Ве и электронную конфигурацию ls 2s . Две расположенные рядом точки означают пару электронов с противоположными спинами, относящуюся к одной и той же орбитали. [c.117]


    Рассмотрим теперь изменение энергий ионизации во втором периоде. Элементы этого периода имеют следующие величины /4 (эВ) 5,39(Ь1) 9,32(Ве) 8,30(В) ]1.26(С) 14,53(Н) 13,61(0) 17.42(Р) 21,5б(Не). Таким образом, при переходе от Ь к Не происходит возрастание энергии ионизации. Это объясняется увеличением заряда ядра (число электронных слоев при этом остается одним и тем же). Однако, как видно из приведенных данных, возрастание /1 происходит неравномерно у следующих за бериллием и азотом бора и кислорода наблюдается даже некоторое уменьшение / 4. Эта закономерность вытекает из особенностей электронного строения. У бериллия, имеющего конфигурацию 15 252, внешняя 5-оболочка заполнена, поэтому у следующего за ним бора, электрон поступает в / -оболочку /7-электрон менее прочно связан с ядром, чем 5-электрон, поэтому первая энергия ионизации у бора меньше, чем у бериллия. Строение внешнего электронного слоя атома азота в соответствии с правилом Хунда выражается схемой [c.76]

    Бериллий. Для бериллия с электронной конфигурацией валентных электронов в основном состоянии 2з следует рассматривать его возбужденное состояние. [c.121]

    Теория спин-валентности обосновывает также, почему, например, у бериллия валентность не может быть больше двух. Это объясняется следующим. Как показывает электронная конфигурация (И), 1з - [c.66]

    Главную подгруппу второй группы составляют бериллий, магний, кальций, стронций, барий и радий, названные щелочноземельными металлами. Это название возникло из-за аналогии окислов типичных элементов этой группы (СаО, SrO, баО), во-первых, окислам щелочных элементов, во-вторых, окиси алюминия— типичному, представителю окислов, издавна называемых землями . Электронные конфигурации щелочноземельных элементов приведены в табл. 1. [c.326]

    Основному состоянию атома Ве отвечает электронная конфигурация 15 252. 3 химических соединениях бериллий двухвалентен, поэтому его валентному состоянию обычно сопоставляют конфигурацию 15 25 2р (о понятии валентного состояния см. далее). Тогда в образовании химических связей в молекуле ВеНа будут участвовать четыре валентных АО ф1 = 2 и Ф2 = 2рх АО атома бериллия и фз = 1 5а и ф< 1 АО атомов водорода.  [c.159]

    Если сказанное применить к элементу II группы, например бериллию (электронная конфигурация 25 ), то видно, что N атомов даст N орбиталей и 2М электронов, так что каждый энергетический уровень в пределах зоны заполнен. При заполнении всех уровней элементы не обладали бы электропроводностью и не могли бы поглощать свет всех длин волн до тех пор, пока следующая зона, соответствующая более [c.74]


    Бериллий. В молекуле бериллия, Всг, четыре валентных электрона. Два из них спарены на связывающей молекулярной орбитали а , а два-на разрыхляющей а. Такая электронная конфигурация означает отсутствие эффективного числа связей, что согласуется с опытными данными - в отличие от устойчивых двухатомных молекул элементов второго периода молекула Вб2 не существует. [c.525]

    II группы периодической системы элементов Д. И. Менделеева, Электронная конфигурация бериллия—ls 2s , а конфигурацию двух последних слоев атомов остальных щелочноземельных металлов можно представить формулой (п— 1 )5 (п— 1)р п5 . [c.237]

Рис. 14. Электронные конфигурации атомов бериллия, бора и углерода а — основное б — возбужденное состояние Рис. 14. <a href="/info/19445">Электронные конфигурации</a> атомов бериллия, бора и углерода а — основное б — возбужденное состояние
    Однако возбуждение такого рода требует затрат энергии в коли чествах, превосходящих то, что можно получить за счет химической реакции с участием бериллия. В связи с этим электронная конфигурация (III) маловероятна, и валентность указанного элемента практически больше двух не бывает. [c.67]

    У магния основное состояние атома отвечает спариванию 35-электронов — его электронная конфигурация [Ые]35 . При сообщении некоторой энергии (промотирование) можно перевести один из этих электронов в Зр-состояние и тогда оба электрона смогут принимать участие в образовании связей. Магний (как и бериллий) кристаллизуется в плотнейшей гексагональной решетке (12 соседей у каждого атома). [c.284]

    Металлы с кубической гранецентрированной и гексагональной решетками в твердом состоянии. Рентгенографические и нейтронографические исследования показывают, что металлы, обладающие в твердом состоянии плотной упаковкой атомов, после плавления сохраняют ее. Это объясняется тем, что при переходе в жидкое состояние электронная конфигурация этих металлов и характер связи не изменяются. Действительно, атомы алюминия при конденсации металлического пара теряют внешний Зр-электрон. Образовавшиеся ионы А1+, обладая 2р 35 -конфигурацией, упаковываются в гранецентрированную кубическую решетку с параметром а = 4,04 Л. При плавлении электронная структура ионов не изменяется и плотная упаковка сохраняется. Незначительное уменьшение координационного числа связано с усилением трансляционной составляющей теплового движения атомов. Бериллий (конф. 15 2з ) и магний (конф. 2р 35 ) обладают высокими вторыми ионизационными потенциалами, поэтому при образовании кристалла их атомы отдают лишь один 5-электрон. Оставшийся второй -электрон придает сферическую форму однозарядным ионам, которые образуют в кристалле гексагональную решетку. При переходе в жидкое состояние электронная конфигурация ионов этих металлов и плотная упаковки существенно не изменяются. [c.176]

    Учитывая, что у бериллия (2 = 4) из четырех электронов два занимают 15-орбиталь, а два других—25-орбиталь, изобразите электронную конфигурацию атома. [c.10]

    Электронная конфигурация бериллия имеет вид l5"2s2. Атомный радиус, по Гольдшмидту, составляет [c.5]

    В конце первого периода и почти в самом начале второго периода находятся химические элементы гелий и бериллий, имеющие очень похожие электронные конфигурации Не 1з и Ве 1в 2б . Атомы обоих элементов содержат по паре электронов на внешней в-орбитали, но гелий и бериллий обладают совсем разными свойствами. Гелий — самый инертный из всех химических элементов (до сих пор не получено ни одного его соединения), а бериллий — металл, образующий оксид, гидроксид, многочисленные соли и комплексные соединения. Почему же два элемента столь различны по свойствам  [c.194]

    Гибридизация электронных облаков — это распростра-неииое явление, когда в процессе образования связей в мо лекулах происходит перестройка электронных облаков атома так, что все образуемые им химические связи становятся одинаковыми, ти связи ие являются Ь — Р, 8 — 5 или другими. связями, а представляют собой своеобразный гибрид тех и других. Например, у возбужденного атома бериллия электронная конфигурация 152, 25 , 2Р и в образовании связи участвуют один 5 — и один Р — электрон. В ходе образования новой молекулы с участием атома бериллия происходит гибридизация электронов первоначальная форма электронных облаков (орбиталей) взаимно изменяется и образуется облако (орбиталь) новой, но уже одинаковой формы. [c.30]

    У атомов с незамкнутой оболочкой антисимметричные функции, используемые в качестве пробных функций в (75,2), надо выбирать в виде линейных комбинаций функций типа (75,10). Эти линейные комбинации составляются так, чтобы они соответствовали определенным значениям полного, орбитального и спинового моментов всего атома. Например, возбужденным состояниям атома бериллия, относящимся к электронной конфигурации (Ь )2(25) (2р), могут соответствовать значения 8 = 0, / = 1=1 и 5 = , Ь = 1, / = О, 1, 2, Функции этих состояний получаются путем линейной комбинации, по правилам сложения ( 42) трех моментов (два спина и = 1), двенадцати детерминантов [c.351]


    Энергетическая диаграмма уровней молекулы ВеНз приведена на рис. 38. В соответствии с большей электроотрицательностью водорода его орбитали в схеме расположены ниже бериллия. Четыре валентных электрона невозбужденной молекулы ВеНз (два электрона от атома бериллия и два от двух атомов водорода) располагаются на а - и оГ-орбиталях, что описывается электронной конфигурацией [c.60]

    Рид. 13. Электронные конфигурации атомов водорода, гелия, лития и бериллия  [c.90]

    На рис. 13 представлена электронная конфигурация атомов водорода, гелия, лития и бериллия. Атомы водорода и гелия на 1 -А0 имеют соответственно 1е и 2в у атома гелия 1а-А0 является полностью заселенной. У атома лития начинается заполнение второго энергетического уровня атомы лития и бериллия получают на 25-АО соответственно е и 2е и у бериллия 2з-АО Заселяется полностью. [c.90]

    Рассмотрим простой случай соединений бериллия. Электронная конфигурация атома бериллия имеет вид ls 2s и характеризуется отсутствием неспаренных электронов, т. е. ожидаемая валентность бериллия в таком состоянии равна нулю. Однако элементарный бериллий вступает в химические реакции и образует соединения типа BeXj с линейной формой молекул в газовой фазе. Чтобы объяснить подобные явления, приходится, во-первых, предположить, что атом бериллия распаривает свои 2s -элeктpoны, переходя в состояние 2s2p. Энергетическая затрата при переводе промотировании) одного электрона на 2р-уровепь с избытком компенсируется энергией, выделяющейся в результате образования двух связей Ве—X. Однако как объяснить линейную конфигурацию молекулы ВеХа  [c.180]

    Из трех мопекул, обсуждавшихся в предыдущем разделе, только СН4 имеет электронную конфигурацию замкнутой валентной оболочки. При обычных те.мпературах и давлениях ВеНз, а также ВН3 используют свои вакантные валентные орбитали для образования более крупных молекулярных агрегатов. Гидрид бериллия при нормальных условиях представляет собой твердое вещество, в котором атомы водорода обобществляют [c.557]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Литий и натрий с валентной электронной конфигурацией обладают ооье.мно-центрированной кубической структурой (рис. 14-7,и). Бериллий и магний с конфигурацией а кристаллизуются в гексагональную плотноупакованную структуру (рис. 14-7,6). Алюминий с конфигурацией имеет кубическую плотноупакованную структуру (рис. 14-7,в). [c.605]

    Магний Mg имеет электронную конфигурацию Is22s22p 3s . Вследствие различного строения предвнешних электронных слоев и наличия у магния валентных -орбиталей наблюдается заметное различие в свойствах магния и бериллия. Поэтому структура, а следовательно, и [c.569]

    ЯВЛЯЮТСЯ ПОЛНЫМИ электронными анапогами, так как у атомов этих элементов электронные конфигурации внешней и предвнешней электронных оболочек совпадают (п - 1)в р п5. Отличие химических свойств этих элементов определяется, а основном, значением п. Аналогично выделяют частичньге и полные электронные аналоги в подгруппе ПА элементов табл. 14.1). Так, бериллий и кальций являются частичными электронными ангалогами, а кальций и барий [c.380]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Рассмотрим молекулярные орбитали другой трехатомной молекулы— радикала ВеН2, имеющей линейное строение (рис. 81). Электронные конфигурации атомов Н[Ь] и Ве[1, 25 ]. Орбиталь 1 бериллия сохраняет свой атомный характер. Молекулярные орбитали, следующие за ней, строим из 15-орбиталей атомов Н и 25- и 2р-орбиталей атома Ве. Сначала строим групповые орбитали из 15-АО водорода— 5 и 5 . Они принадлежат к той же точечной группе симметрии 2 , что и сама молекула, и имеют нид [c.195]

    Третья группа элементов периодической системы — самая эле-мептоемкая. Она содержит 37 элемеитов, включая лантаноиды и актиноиды. Все элементы III группы, за исключением бора, являются металлами. Первый типический элемент бор — неметалл. В какой-то мере бор выполняет роль переходного элемента от металлического бериллия к углероду. Но 1юскольку у атома бора уже в нормальном состоянии на кайносимметричной 2уО-орбитали имеется один электрон (а в возбужденном состоянии 2 электрона), он функционирует как неметалл. Наконец, в третьей груние наблюдается наименьшая разница в свойствах элементов IIIА- и ШВ-групп. Элементы подгруппы галлия, как и А1, являются б р-металлами. В отличие от пих элементы подгруппы скандия принадлежат к sii-металлам. Но в характеристической степени окисления +3 элементы подгруппы галлия имеют внешнюю электронную конфигурацию (n—l)d а типовые аналоги скандия, как и А1(+3),— электронную структуру благородных газов Поэтому некоторые авторы располагают [c.137]

    Второй период. Он открывается следующим элементом — литием (2 = 3). -оболочка заселена двумя электронами, третий электрон помещается на следующем энергетическом уровне — на х-подоболоч-ке -оболочки. Следовательно, электронная конфигурация лития — 15 28 . Эта 25-подоболочка заселяется двумя электронами в случае бериллия (2 = 4) электронная конфигурация бериллия — 1з 25 . Добавочный электрон атома бора 2 = 5) принадлежит энергетическому уровню 2р его электронная конфигурация — 15 2х 2р . Следующие элементы соответствуют заполнению 2р-подоболочки, которая может содержать шесть электронов, распределенных по трем [c.31]

    Орбиталь с минимальной энергией — это 15-орбиталь. Ее занимает единственный электрон атома водорода. Поэтому электронная конфигурация или электронная формула атома водорода записывается 15 Поскольку на одной 5-орбитали могут находиться два электрона, то электронная формула гелия 15 . Согласно табл. 1 электронная формула лития 15 251, бериллия ls22s неона 5-25 2р . [c.42]

    Бериллий — четвертый элемент периодической системы Д. И. Менделеева. Атомный вес 9,0122, электронная конфигурация Двухэлектронный внешний слой характерен для всех элементов II группы. Принадлежность бериллия к главной подгруппе определяется тем, что у него, как и у других элементов этой подгруппы, под внешними 5-электронами находится электронная оболочка инертного газа. Известен лишь один природный стабильный изотоп бериллия Ве, что отличает его от других четных элементов периодической системы. Есть также радиоактивные изотопы Ве, Ве, Ве, °Ве последний ( Ве) самый долгоживуш,ий (период полураспада 2,5-10 лет). [c.165]

    У атома бериллия с конфигурацией ls 2s в основном состоя НИИ нет неспаренных электронов. С точки зрения метода ВС аток бериллия способен к образованию связей лишь после возбуждения (или промотирования ) одного из 2в-электронов на следующую по энергии вакантную орбиталь 2р. Этот процесс можно изобразит , схемой [c.55]

    В конце первого периода и почти в самом начале второго периода находятся химические элементы гелий и бериллий, имеющие очень похо жие электронные конфигурации Не 18 и Ве Атомы обоих эле [c.194]

    Перестройка электронного состояния происходит и при химическом соединении бериллия с другими атомами. Свободный атом бериллия имеет конфигурацию (ls) (25) . Валентное состояние атома бериллия (ls) (2ii) (2р) V определяется двумя внешними электронами, находящимися в состояниях, описывающихся двумя взаимно ортогональными, нормированныгЛи к единице иа сфере единичного радиуса, волновыми функциями [c.634]

    Ве. Атом бериллия в основном состоянии имеет электронную конфигурацию ls 2s , которой соответствует один терм — 5. При возбуждении одного -электрона атома Ве образуется группа синглетных и триплетных термов, соответствующих конфигурации ls 2s i S)nl со значениями L = I. Ионизационный предел этой группы расположен на 75192,29 см , а первое возбужденное состояние 2р —-на 21 980 смГ выше основного состояния S. В табл. 230 приведены пять уровней энергии атома Ве, учитывавшиеся при расчетах термодинамических функций и соответствующие переходу 2s-электрона в 2р- и Зз-состояния. Более высокие уровни с энергиями возбуждения, превышающими 56 ООО могут не рассматриваться при последующих расчетах. [c.787]


Смотреть страницы где упоминается термин Бериллий, электронная конфигурация: [c.44]    [c.8]    [c.42]    [c.379]    [c.9]    [c.8]    [c.126]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.0 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Электрон конфигурации

Электронная конфигурация



© 2025 chem21.info Реклама на сайте