Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дуговой разряд дуга

    Для зажигания дугового разряда [444] оба электрода сближают, так что вследствие тепла сопротивления катод в отдельных местах разогревается до температуры, возбуждающей дуговой разряд. Дугу можно зажечь при помощи искрового или тихого электрического разряда. Анод может быть холодным однако при горении дуги в нормальных условиях его температура достигает 3800°, т. е. температуры более высокой, чем температура катода ( 3200°). При электрической дуге переменного тока, которая легко гаснет, температура электродов всегда ниже. Дуга горит гораздо спокойнее, если она возникает при постоянном токе и при достаточно большом шунтирующем сопротивлении и, по крайней мере, угольном катоде. При увеличении силы тока дуга начинает шипеть и горит при значительно более низком постоянном напряжении. При свободном горении на воздухе угольный электрод постепенно уменьшается за счет окисления сгорание электрода в атмосфере аргона происходит лишь на 1% от количества, которое сгорает на воздухе. Подобно дуговому разряду, возникающему между угольными электродами, ведет себя дуга, возникающая между другими металлически проводящими веществами исключением является дуговой разряд в ртути. (При всех работах с дуговым разрядом глаза следует защищать темными очками.) [c.140]


    Дуговой разряд (дуга переменного и постоянного тока) обладает эффективной температурой 5000—7000 С, что обеспечивает возбуждение большинства элементов и позволяет вести анализ непроводящих ток и тугоплавких образцов. В высоковольтной искре (10 ООО—16 ООО в) с эффективной температурой 7000—15 ООО °С возбуждают спектры элементов с высокими потенциалами возбуждения и ионизации. Импульсный и электровакуумный разряды используют для возбуждения инертных газов и высокоионизированных элементов. [c.127]

    Вследствие падающего характера дугового разряда дуга может гореть устойчиво лишь при наличии последовательно включенного активного сопротивления. Рассмотрим зажигание дуги, происходящее при размыкании контактов аппаратов или электродов. В момент размыкания электродов между ними возникает разрыв, сначала ничтожный, а затем быстро возрастающий. Так как вначале разрыв мал, то градиент электрического поля в промежутке очень высок. Естественно, что в этих условиях возникает автоэлектронная эмиссия из катодов, которая и зажигает дугу. Для начала появления автоэлектронной эмиссии необходимо иметь градиент, который по теоретическим подсчетам равен 3-10 В/см. [c.107]

    Прохождение тока через газ по историческим причинам получило название электрического разряда . Явления, возникающие при газовом разряде, сложным образом зависят от рода и давления газа, материала электродов и их геометрии, окружающих тел, а также от силы протекающего тока. Различные формы разрядов, получили специальные наименования темный разряд, корона, тлеющий разряд и т.д. Мощные разряды (с силой тока от 10 1 до 10 А) даже при различных условиях обладают рядом общих особенностей, что позволяет объединить их под одним названием - дуговой разряд . Термин дуга применяют к устойчивым формам разряда. Электрическая дуга была открыта В.В. Петровым в 1803 г. [c.80]

    Возникновение дугового разряда при изменении силы тока в разрядном промежутке при низком давлении (133,3 Па) отмечено точкой на статической вольт-амперной характеристике (рис. 4.1). Распределение электрического потенциала между электродами при горении дуги неравномерно (рис. 4.2), поэтому в пространстве катод I - анод 2 выделяют три характерных области анодного падения напряжения I, столба II и катодного падения III (рис. 4.2). Дуга отличается малым 80 [c.80]

    Дуговой разряд как способ теплогенерации за счет электрической энергии имеет весьма широкое распространение. В современных печах тепловые мощности дуг превышают 85 ШЗт или свыше 100 кВт/см анодного пятна. Изменяя длину дуги и рабочее напряжение, можно в широких пределах регулировать их способность, к генерации тепла в соответствии с требованиями технологии. [c.231]


    Для получения теплогенерации из электрической энергии в газовой среде практическое значение имеют два вида газового электрического разряда — распределенный и дуговой. Принцип распределенного разряда целесообразно использовать в электрохимических горелках, позволяющих при сжигании топлива повысить предельную температуру пламени до 3500 К. Дуговой разряд широко применяется в различных печах с открытой п закрытой дугой. Главным его преимуществом является возможность в значительных пределах регулировать теплогенерацию за счет изменения длины дуги и напряжения. [c.240]

    В угольной дуге постоянного тока возбуждаются спектры почти всех элементов, за исключением некоторых газов и неметаллов, характеризующихся высокими потенциалами возбуждения. По сравнению с измерениями эмиссии или абсорбции пламени дуговой разряд обеспечивает снижение предела обнаружения элементов примерно на порядок величины, а также существенное снижение уровня матричных эффектов. [c.59]

    Дуговой разряд отличается неустойчивостью. Одной из причин этого является непрерывное перемещение катодного пятна, которое собственно и обеспечивает термоэлектронную эмиссию, необходимую для поддержания разряда. Для устранения неустойчивости дуги в ее цепь включают большое балластное сопротивление 7 . Ток, текущий через дугу, по закону Ома равен [c.59]

    Дуговой разряд можно питать и переменным током. Однако такой разряд не может существовать самостоятельно. При изменении направления тока электроды быстро остывают, термоэлектронная эмиссия прекращается, дуговой промежуток деионизуется и разряд гаснет. Поэтому для поддержания горения дуги переменного тока используют специальные поджигающие устройства дуговой промежуток пробивают высокочастотным импульсом высокого напряжения, но малой мощности (рис. 3.2). [c.60]

    Защита от ультрафиолетового излучения. Сильное ультрафиолетовое излучение искрового и особенно дугового разрядов может вызывать тяжелые конъюнктивиты глаз. Поэтому закрытые электродные штативы должны оборудоваться контрольными окнами с темными стеклами. Если необходимо работать с открытыми штативами, то следует использовать защитные очки, закрывающие область глаз со всех сторон. Во избежание ожога нельзя производить смену электродов и проб незащищенными руками при работе с дуговыми генераторами. Для этого следует использовать щипцы, пинцеты и другие защитные средства. Во время горения дуги или искры регулировку положения электродов разрешается производить только при помощи специальных приспособлений, вынесенных за пределы защитного кожуха. [c.96]

    Возбуждают дугу переменного тока, включая тумблеры на лабораторном щите и пульте генератора ДГ-2, устанавливают напряжение на трансформаторе — 220 В и ток питания дуги — 5 А. Положения других рукояток трансформатора установлены заранее и не изменяются при выполнении работы. Проверяют правильность установки трехлинзовой системы освещения щели. В этом случае световое пятно светового потока от разряда дуги должно полностью вписываться в пространство, ограниченное окружностью на крышке щели, и заполнять его. На промежуточной диафрагме должно быть резкое изображение электродов и дугового разряда. Отверстие промежуточной диафрагмы [c.30]

    Дуговой разряд. Более совершенным является метод возбуждения спектров при помощи дугового разряда. При анализе тугоплавких металлов в качестве электродов применяются сами металлы. Для анализа минеральных солей обычно применяют дугу между угольными электродами. Расстояние между электродами обычно называют аналитическим или дуговым промежутком. Дугу питают постоянным или переменным током, Дуга переменного тока [c.229]

    На рис. 3.1 показана схема дуги постоянного тока. Зажженный разряд поддерживается за счет термоэлектронной эмиссии с поверхности раскаленного катода. Падение напряжения на электродах обычно составляет 30—70 В и зависит от многих факторов материала электрода, силы тока через дугу, дуговогО промежутка, состава и давления атмосферы. Максимальное падение напряжения наблюдается при использовании угольных электродов введение в дуговой разряд легко ионизующихся элементов снижает напряжение. В рабочем режиме сила тока, питающего дугу, изменяется от нескольких единиц до нескольких десятков ампер в зависимости от поставленной задачи. [c.34]

    Дуговой разряд постоянного тока имеет падающую вольт-ам-перную характеристику (рис. 3.2), и для стабилизации дуги используют балластное сопротивление (см. рнс. 3.1). [c.34]

    Стабильность условий разряда в активизированной дуге переменного тока значительно выше, чем в дуговом разряде постоянного тока, что приводит к лучшей воспроизводимости результатов анализа. Благодаря прерывистому горению дуги переменного то- [c.45]

    Для повышения воспроизводимости количественных определений и снижения пределов обнаружения предлагаются различные способы стабилизации дугового разряда наложение магнитного поля, соосного разряду обдув свободно горящей дуги потоком газа помещение разряда в охлаждаемую трубку, которая ограничивает поперечное сечение разряда. Такие приемы не только стабилизируют дугу пространственно, но и изменяют параметры разряда — напряжение, температуру и электронную концентрацию, пространственное распределение и концентрацию элементов в облаке. В дуговом плазмотроне используется принцип стабилизации дуги потоком газа и стенками. [c.52]


    Основными источниками света являются электрические дуговые разряды, но в ряде случаев применяют ИСП. Для введения порошков в дуговой разряд чаще всего используют способ испарения вещества из канала электрода и способ просыпки порошка в разряд горизонтальной дуги переменного тока. Токонепроводящие порошки предварительно смешивают с угольным порошком для более равномерного нагрева, а также с различными добавками. [c.117]

    В скобки взяты элементы, близкие по условиям поступления в дугу. Элементы, отмеченные звездочкой, поступают в дуговой разряд вместе с летучими составными частями пробы в виде хорошо [c.203]

    Непрерывное горение дуги, большая мощность и энергичное испарение электродов обеспечивают высокую яркость дугового разряда. Относительно низкая температура плазмы приводит к появлению в спектре дуги линий, главным образом с невысокими потенциалами возбуждения. Наиболее интенсивные линии, возбуждаемые в дуговом разряде, расположены в видимой, а также в ближайшей и средней ультрафиолетовой областях спектра. [c.60]

    Благодаря высокой яркости дуги и энергичному испарению вещества, она обеспечивает высокую чувствительность при анализе всех элементов, кроме трудновозбудимых. Следует отметить, что для щелочных и щелочноземельных металлов даже дуга оказывается часто слишком горячим источником света. При их определении для повышения чувствительности необходимо снижать температуру дугового разряда примерно до 4000°. [c.60]

    Дуговой разряд можно питать как постоянным, так и переменным током. В последнем случае горение дуги прерывается дважды в течение каждого периода тока, когда напряжение на электродах недостаточно для поддержания самостоятельного разряда. [c.60]

    Используя вольт-амперную характеристику дугового разряда постройте график изменения мощности дуги в зависимости от тока в интервале 2—10 а. [c.65]

    Реостат служит балластным сопротивлением, стабилизирующим горение дугового разряда. Он позволяет регулировать ток дуги. Удобно использовать два реостата, каждый сопротивлением около 40 ом, рассчитанные на ток 5—6 а. При небольшом токе дуги реостаты включают последовательно, при большом до 10—12 а — параллельно. [c.66]

    Схема дуги переменного тока. Большое распространение получила дуга, питаемая переменным током. Можно использовать схему, приведенную на рис. 41, исключив из нее выпрямитель. Зажечь дуговой разряд с помощью такой схемы удается только с угольными или графитовыми электродами, но дуга горит стабильно только при большом токе. [c.67]

    В момент И происходит пробой разрядника, и высокочастотные колебания попадают на электроды и ионизируют воздушный промежуток. Возникает дуговой разряд. В силовой части схемы течет ток и напряжение на электродах падает, так как часть напряжения сети теперь гасится на реостате. Начиная с этого момента и до момента ИI дуга горит так же, как и при питании постоянным током. Активизатор не оказывает на нее влияния. [c.69]

    Соберите дугу постоянного тока. Параллельно электродам подключите вольтметр. Снимите две вольтамперные характеристики дугового разряда, изменяя по указанию преподавателя материал электродов или величину дугового промежутка. Подсчитайте, как меняется мощность дугового разряда в зависимости от тока. Для одного значения тока дуги подсчитайте, какая часть всей затраченной мощности расходуется в дуговом промежутке. [c.79]

    Поскольку плазма не находится в равновесии, ее характеристики отвечают лишь определенным стационарным процессам. Непрерывно происходит ионизация и нейтрализация зарядов, выделение энергии внутри плазмы и охлаждение вследствие взаимодействия с окружающей средой. При этом наиболее трудно происходит обмен энергией между ионами и электронами, что обусловлено большим различием в их массах. Поэтому отсутствует термическое равновесие между ионами и электронами, а также и нейтральными частицами (молекулами). Энергию от электрических источников (например, дуг) непосредственно получают электроны. Вследствие этого 7 а>7 и>7 м, где Тэ, Ти, 7 м — температуры электронов ионов и молекул (или атомов). В газоразрядных трубках Гэ имеет порядок 10 С, а Та и Ты лишь (1—2)-10 °С. В дуговом разряде, где плотность газа выше и число столкновений больше, величины Та, Тя и Та сближаются. При этом Т и Тм достигают около 6000° С. [c.357]

    Активизированная дуга переменного тока. Дуговой разряд переменного тока не может поддерживаться самостоятельно между металлическими электродами, так как направление тока меняется 100 раз в секунду (50 Гц). За такой промежуток времени металлические электроды успевают остыть, и термоэлектронная эмиссия при этом не происходит, а дуга гаснет и не загорается. Для восстановления дуги в начале каждого полупериода тока ее необходимо зажигать с помощью высокочастотного тока (рис. 30.8,6). [c.662]

    Принцип действия плазматрона состоит в том, что при охлаждении поверхностного слоя облака дугового разряда происходит сжатие разрядного шнура дуги, в результате чего увеличивается плотность тока в ней. Это достигается помещением графитовых или тугоплавких электродов в камеру, в которую вводят струю инертного газа в направлении касательных к камере. Механизм работы плазмотрона ясен из рис. 30.9. В горящую дугу вводят аэрозоль анализируемого раствора. Вихреобразные струи инертного 1 аза охлаждают снаружи облако разряда и выносят образуемую плазму через отверстие в катоде в виде светящейся струи длиной 10—15 мм. По мере увеличения скорости потока через выходное отверстие возрастает электропроводность струи, что приводит к повышению плотности тока и увеличению температуры [c.663]

    Электрическая дуга является одним из видов электрического разряда в газе или в парах. Она характеризуется малым катодным падением напряжения (10— 20 В) и высокой плотностью тока, которая может достигать сотен и тысяч ампер на 1 см . Неионизированные газы и пары, состоящие из нейтральных частиц, не проводят электрический ток. В дуговом разряде газ сильно ионизирован, в нем присутствуют положительно заряженные ионы и отрицательно заряженные свободные электроны. При наложении электрического поля на дуговой промежуток заряженные частицы под его действием [c.180]

    Необходимо отметить, что при данных экспериментальных условиях разряд не обязательно полностью соответствует такому определению проведенное выше деление означает лишь, выбор последовательности при описании. На практике предпро-бойная стадия может не завершиться пробоем, а высоковольтная пробойная стадия не обязательно заканчивается дуговым разрядом дугу можно получить способами, отличающимися от высоковольтного пробоя (например, протяженные и индуцированные лазером дуги). [c.23]

    Этот вид имеет и другие названия - независимая плазменная струя или плазменная дуга косвенного действия. При этом дуговой разряд 4 возникает между электродом 1 и корпусом плазмотрона 2. Поток газа 3, проходя через столб дуги 4, образует кинжалообразный язык плазмы 5 с температурой порядка 10000 - 15000 °С, используемый для проплавления разрезаемого металла 6. [c.117]

    Плазменная наплавка. Плазма представляет собой высокотемпературный сильно ионизированный газ. Она создается возбуждаемым между двумя электродами дуговым разрядом, через который пропускается газ в узком канале. Присадочный материал может подаваться в виде проволоки, ленты или порошка. При наплавке по слою крупнозернистого порошка последний заранее насыпается на наплавляемую поверхность, а плазменная дуга, горящая между электродом и и.чделием, расплавляет его. При наплавке с вдуванием порошка в дугу порошок подается в плазменную струю, плавится в струе и наносится на предварительно подогретую поверхность изделия. В качестве плазмообразующего газа используется аргон. Плазменная наплавка позволяет значительно повысить износостойкость деталей. Объясняется это минимальным проплавлением основного металла в процессе наплавки порошковых сплавов, что обеспечивает получение необходимых свойств наплавки уже в первом слое. [c.92]

    Состояние газа в дуговом разряде обычно соответствует состоянию изотермической плазмы. Благодаря высокой температуре глла и высокой электронной температуре , достигающей нескольких тысяч градусов, большой плотности тока и обычно высокому давлению в дуге преобладают химические процессы, характерные для высоких температур, в частности процессы температурного к]]екинга. [c.179]

    Работоспособность плазмотрона определяется катодом, который играет важную роль в процессе плазмообразования. Основные технологические показатели, характеризующие работу катодов при плазменных процессах максимально допустимая сила тока, эрозионная стойкость, способность к возбуждению дугового разряда и поддержанию его стабильного горения. В прилегающей к катоду области происходят важнейшие физические процессы, существенно влияющие на общую характеристику сжатой дуги. Вследствие высокой температуры сжатой дуги и большой плотности тока катоды работают в очень тяжелых термических условиях. Температура поверхности катода в местах локального контакта с плазмой может достигать 2000 - 4000 К и выше. [c.61]

    Дуговой разряд поддерживался в водоохлаждаемой камере в атмосфере гелия при давлении 100 Topp. Скорость подачи электродов была постоянной - 4 мм/мин. Эксперименты проводили при силе тока 65, 70 и 75 А и падении напряжения на дуге -18 В. Получаемую фуллерен-содержащая сажу просеивали через сито 0.25 мм, взвешивали и экстрагировали толуолом в аппарате Сокслета. Экстракты фуллеренов упаривали на роторном испарителе, промывали эфиром, высушивали и определяли вес. [c.151]

    Дуговой разряд постоянного тока. Дуга постоянного тока представляет собой, стационарный газовый разряд, в котором прохождение тока обусловливается электронами и ионами. Для спектрально-аналитических целей преимущественно используют дугу низкого напряжения между угольными (графитовыми) электродами (ток 5—15 А, питающее напряжение 220 В, ток ограничивают балластным сопротивлением). Температура дугового разряда зависит от подводимой электрической мощности и от природы газа в межэлектродном промежутке. В смесях эта температура определяется наиболее легко ионизируемым элементом (например, для дуги с чисто угольными электродами Т 7700 К при потенциале ионизации 1 = 11,3 эВ, а для дуги между цезиевыми электродами Т 2900 К при , = 3,9 эВ). Вводя легко ионизирующиеся элементы в плазму дуги, можно регулировать ее температу- [c.187]

    В качестве источника возбуждения при анализе металлов используют преимущественно искру, а при анализе иеэлектропроводных материалов — дуговой разряд постоянного тока. Часто в начальный момент горения дуги из графитового электрода улетучивается особенно большое количество вещества. Поэтому для обеспечения высокой чувствительности следует регистрировать начальный момент. Воспроизводимые условия возбуждения связаны с установлением равновесия испарения, о достижении которого можно судить по постоянству интенсивности наблюдаемых линий во времени. Установление такого равновесия (время обжига или обыскривания) следует определять в предварительном опыте. В количественном анализе спектр регистрируют сразу же после проведения этой предварительной операции. Как правило, время экспонирования фотопластинки не должно превышать 30 с в этом случае получаются достаточно хорошие результаты. Для проведения оптического спектрального анализа требуется очень небольшое количество вещества. Поэтому имеется возможность угокальиого анализа отдельных участков пробы. Используя особые условия проведения разряда и особые приемы подготовки, на металлах можно анализировать участки поверхности диаметром 0,5 мм и меньше [13, 14]. [c.194]

    Рнс. 3.3. Зависимость мощности дуги от силы тока при введении в дуговой разряд различных вещестн 1 — угольный порошок 2 — SiOz  [c.36]

    Дуга переменного тока занимает промежуточное положение между дуговым разрядом постоянного тока и искрой по основным параметрам. Механизм поступления пробы в столб дуги различен в зависимости от полярности электрода. При отрицательном заряде имеет место эрозионный механизм (микроучастки поверхности под воздействием разряда мгновенно расплавляются, и пары металла в виде микроструй выбрасываются в межэлект-родный промежуток). При положительной полярности преобладает термический механизм. [c.47]

    В процессе анодирования при повышении напряжения на поверхности алюминия формируется диэлектрическая окисная пленка аморфного строения, состоящая из внутреннего тонкого барьерного слоя и наружного, пронизанного многочисленными порами. При достижении напря-дения дуги на поверхности анода, покрытого диэлектрической окисной пленкой, в местах микродефектов и пор возникает пробой окисной пленки и появляются г>шкро-цр дуговые разряды. Под действием микродуго-вых разрядов идет процесс окисления, толщина пленки в этих местах растет, и происходит залечивание дефектных точек. В результате анод покрывается плотной окисной пленкой, обладающей высокими изолирующими и [c.123]

    Температура в зоне микродугового разряда может достигать 3273 К. Внутри дугового разряда происходит термическое разложение воды, и при наличии в электролите тяжелых металлов, попадающих в зону дуги, идут процессы термолиза и образования нерастворимого окисла по следующей схеме  [c.124]

    В дуговом разряде одним из основных путей ионизации газа является соударение частиц, вызванное их интенсивным тепловым движением. Такая термическая и онизация. может иметь существенное значение только при очень высоких температурах в столбе дуги, где температура достигает 6000, 8000 К и более. При этих температурах пары большинства металлов в значительной степени ионизированы пары газов для существенной термической ионизации требуют более высоких температур (15 ООО К и выше). [c.181]


Смотреть страницы где упоминается термин Дуговой разряд дуга : [c.27]    [c.188]   
Ионизованные газы (1959) -- [ c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Разряд дуговой



© 2025 chem21.info Реклама на сайте