Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий средах

    Существует много фотометрических методов определения циркония. При проведении реакций необ.ходимо всегда учитывать ионное состояние циркония (IV) в водных растворах, который благодаря высокому заряду и малому ионному радиусу легко гидролизуется и образует полимерные частицы. Для предотвращений этих процессов все реакции проводят в кислой среде. [c.489]


    Сторонники теории флогистона, а среди них был и Пристли, пытались доказать несостоятельность взглядов Лавуазье (взглядов, которых придерживаются и сегодня), но большинство химиков восприняли их с энтузиазмом. Среди сторонников Лавуазье был и шведский химик Бергман. В Германии одним из первых приверженцев Лавуазье стал Мартин Генрих Клапрот (1743—1817). Среди немецких ученых считалось очень патриотичным придерживаться теории флогистона, поскольку автор теории Шталь был немцем. Поэтому выступление Клапрота в поддерм<ку теории Лавуазье произвело сильное впечатление. Позднее Клапрот внес свой вклад в открытие элементов в 1789 г. он открыл уран и цирконий. [c.52]

    Одно нз наиболее ценных свойств металлического циркония — его высокая стойкость против коррозии в различных средах. Так, он не растворяется в соляной и в азотной кислотах и в щелочах. [c.650]

    Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах РеС1з наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте. [c.379]

    На основании многочисленных опытов по изучению растворимости в водных средах, изучению экстракционных свойств НСО по отношению к водным растворам солей редких металлов урана, тория, циркония, гафния, молибдена, тантала, ниобия, р. 3. элементов, палладия и других было ясно, что НСО как эффективные экстрагенты следует получать из нефтяных сульфидов, выкипающих в интервале 250—370°. [c.29]

    Средние фосфаты всех металлов (за исключением щелочных металлов) труднорастворимы в воде. Однако для осаждения -средних фосфатов необходима согласно произведению растворимости определенная минимальная концентрация ионов Р04 . Поэтому на процесс осаждения фосфатов металлов можно влиять изменением концентрации протонов и связанной с ней концентрации ионов Р04 . Кислые фосфаты водорода, как правило, растворимы гораздо лучше, чем средние. В сильнокислой среде все фосфаты (кроме фосфата циркония) легкорастворимы. Сведения о труднорастворимых фосфатах содержатся в соответствующих разделах, посвященных химии металлов. Поэтому ниже приведены Пр лишь для некоторых фосфатов. [c.551]


    Ионы галогенов в меньшей степени влияют на аНодное поведение титана, тантала, молибдена, вольфрама и циркония, и их пассивное состояние может сохраняться в среде с высокой концентрацией хлоридов, в отличие от железа, хрома и Ре—Сг-спла-вов, теряющих пассивность. Иногда это объясняют образованием на перечисленных металлах (Т1, Та, Мо и др.) нерастворимых защитных основных хлоридных пленок. Однако в действительности подобная ситуация возникает благодаря относительно высокому сродству этих металлов к кислороду, что затрудняет замещение ионами С1 кислорода из пассивных пленок, вследствие более высоких критических потенциалов металлов, выше которых начинается питтингообразование. [c.85]

    В ряде случаев метод защиты инертными газами применяют без достаточного обоснования или также необоснованно не применяют. Порошки некоторых металлов в среде азота и двуокиси углерода способны реагировать с выделением тепла и воспламеняться с последующим взрывом в отсутствие кислорода пыли магния и его сплавов, титана, циркония и тория способны взрываться в атмосфере чистой двуокиси углерода. Поэтому защита от взрыва таких пылей указанными инертными газами невозможна. Следует принимать дополнительные меры по предупреждению взрывов пылей этих материалов. Технологические же процессы, связанные с получением и обработкой алюминиевого порошка, можно безопасно проводить в атмосфере азота. [c.283]

    Титан, цирконий и гафний химически устойчивы во многих аг-ре< сивных средах, В частности, титан устойчив против действия ра творов сульфатов, хлоридов, морской воды и др. В HNO3 все они па сивируются. В отличие от циркония и гафния титан при нагревании растворяется в соляной кислоте, образуя в восстановительной атгюсфере Нг аквокомплексы Т1(П1) — [Ti(OH 2) [c.530]

    При конденсации т/ ет-бутилхлорида с пропиленом образуются первичный продукт 2-хлор-4,4-диметилпентан и большее или меньшее количество (в зависимости от катализатора и условий) продукта его перегруппировки 2- и 3-хлор-2,3-диметилпентана. Как правило, в качестве побочных продуктов получаются децилхлориды пока еще не установленного строения, вероятно, в результате конденсации трет-гентилхлори-дов с пропиленом. Если вести реакцию в присутствии хлористого алюминия при —30°, то с выходом до 70% образуются гептилхлориды, среди которых около 45% приходится на долю 2-хлор-4,4-диметилпентана, остальную часть составляет З-хлор-2,3-диметилпентан с ничтожными примесями 2-хлор-2,3-диметилпентана. Подобные же смеси с выходами от 20 до 60% получались и при проведении реакции в присутствии хлорного железа (при —15°- —-10°), фтористого бора (при 10°), хлористого висмута, хлористого цинка, хлористого циркония (при комнатной температуре) и хлористого титана (при 50°) [18 . Наиболее высокое содержание 2-хлор-4,4-диметилпентана в продуктах реакции было получено при использовании в качестве катализатора хлористого висмута. [c.229]

    Было выяснено, что гидролизованные катионы металлов лучше всего извлекаются из нитратных сред, плохо из сульфатных. Из нитратных сред хорошо извлекаются висмут (П1), железо (Н1), медь, кобальт, цинк, никель, хуже цирконий и гафний. Состав экстрагируемых комплексов был установлен, как непосредственным химическим анализом, так и методом сдвига равновесия. [c.41]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Получены гибридные неорганические сорбенты с привитыми органическими функциональными группами. На таких сорбентах сорбция достаточно полно протекает в статических условиях. Амфотерные гидратированные оксиды — оксид алюминия, диоксиды циркония, титана, олова и др. — в зависимости от pH раствора проявляют способность обменивать катионы или анионы. В щелочной среде они ведут себя как катиониты, а в кислой среде — как аниониты. [c.317]

    Магний довольно стоек во влажном воздухе и в воде за счет образования на его поверхности малорастворимой пленки Мд(ОН)г. В безводной среде, особенно при соприкосновении с окислителями при высокой температуре, магний очень активный металл. Это свойство широко используется в химической практике для восстановления в первую очередь титана, а также бора, кремния, хрома, циркония и др. методами магнийтермии. На этом же свойстве основано применение магния в кино- и фотоделе и др. Некоторое применение магний находит и в производстве химических источников тока в качестве анодного материала, а также в химической промышленности для магнийорганического синтеза. [c.506]


    В последние годы появляется большое число сообщений, посвященных химии редких и рассеянных элементов, в частности титана и циркония. Среди этих сообщений большое место занимают работы по хроматографическому отделению названных элементов от их спутников. Разработан ряд методов отделения Ti от А1, Fe, V, Zn, Th, W, Nb, Mo 1—7] Zr от Hi, Al, Th, Fe, Ni, Nb [8—12] с использованием самых различных катионообменных и анионообменных сорбентов, а также растворов комплексо-образующих веществ. [c.373]

    Из нитратных сред экстрагируются координационно-сольва-тированные сульфоксидами соли, поэтому экстракция большинства металлов из нитратных сред с небольшой и постоянной ионной силой не зависит от варьирования концентрации водородных ионов. При экстракции циркония, гафния с ростом концентрации водородных ионов происходит увеличение коэффициента распределения (Д), что связано, по-видимому, с плохой экстракцией присутствующих гидролизованных форм катионов данных м< .таллов при низких концентрациях водородных ионов. При извлечении из хлоридных растворов сульфоксиды, по аналогии с ТБФ, могут экстрагировать хлориды ме- аллов по двум механизмам в виде координационио-сольватированных соединений МеХ и комплексных анионов, входящий, в состав ионных ассоииатов. [c.39]

    Гетерогенные катализаторы полимеризации этилена, пропилена и других а-олефинов предложено получать напылением тонких слоев переходных металлов на поверхность неорганических солей. Для этой цели используют обычно титан, ванадий, уран, тантал, никель [9, 859, 860]. Процесс полимеризации начинается только после обработки этих катализаторов триэтилалюминием или ли-тийалкилами. Галогениды кобальта, марганца, магния или железа, металлированные титаном, проявляют более высокую- активность, чем аналогичные катализаторы на основе ванадия или циркония. Среди этих катализаторов следует отметить комбинации пирофорный титан — А1(С2Н5)з титан, нанесенный на СеС1з- А1 (С2Н5) з Ti, Zr, Hf, Th, V, Та, Nb, Сг, Mo, W—MeR в насыщенных углеводородных растворителях и т. п. [861]. Полимеризация на этих катализаторах протекает при повышенных температурах и давлениях. Механизм инициирования не выяснен, но можно предположить, что активные центры в катализаторах, представляющих упоминавшиеся выше комбинации, образуются следующим образом  [c.227]

    IV группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 40, ат. м. 91,22. Открыт Ц. в 1789,г. М, Клапротом. В состав природного Ц. входят пять стабильных изотопов, известны 14 радиоактивных изотопов. В природе распространепы главным образом минералы циркон ZrSi04 и бадде-леит ZrOa. Все природные минералы Ц. имеют примесь гафния. Ц.— металл серебристо-белого цвета с характерным блеском, т. пл. 1852° С. Химически чистый металл исключительно ковок и пластичен. В соединениях проявляет степень окисления -f-4. Ц, очень устойчив против коррозии в химически агрессивных средах. Ц., очищенный от гафния, находит применение как конструкционный материал в ядерной энергетике, электровакуумной технике (как геттер), в металлургии как легирующий металл, в химическом машиностроении. Из диоксида Ц. и циркона изготовляют огнеупорные материалы, керамику, эмали и особые сорта стекла. [c.285]

    Поставляет хелаты титана и циркония, растворимые в органических средах. [c.329]

    Наибольшее применение нашел морин-3, 5, 7, 2, 4 -пентаоксифлавон который в кислой среде образует с цирконием соединение, обладающее ярко-зеленой флуоресценцией. Структура соединения окончательно не выяснена. [c.95]

    Преимущество морина по сравнению с другими реагентами для определения циркония заключается в его способности давать интенсивно флуоресцирующие комплексы в довольно кислых растворах. В этих условиях лишь немногие элементы реагируют с морином. Оптимальной для определения циркония является среда 2М НС1. Интенсивность флуоресценции максимальна через 10—15 мин после добавления реагентов и в течение 1 ч практически не изменяется. Длительное облучение растворов комплекса приводит к уменьшению интенсивности флуоресценции. [c.95]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    Ализарин S образует также окрашенный лак с цирконием, который в отличие от лаков других катионов устойчив в среде ] ] М H I. Поэтому ализарин S является специфическим реагентом на Zr. [c.15]

    При выборе фильтрующего материала необходимо также исключать возможные воздействия на него фильтруемых агрессивных сред. В связи с этим в ряде случаев приходится даже применять фильтры из глинозема, оксидов циркония, тория и др. [c.25]

    Следует отметить, что в то время, когда Н. Бор строил таблицу, семьдесят второй элемент не был открыт. Было неясно, сколько должно быть редких земель. Полагая, что число их равно пятнадцати, семьдесят второй элемент искали среди минералов, содержащих редкие земли. Так как число 4/-электронов равняется 14, то этот элемент должен иметь близкую к цирконию внешнюю оболочку. Поэтому Н. Бор предложил искать семьдесят второй элемент в циркониевых рудах. Этот элемент, названный гафнием, и был обнаружен в циркониевых рудах. Цирконий и гафний играют большую роль в современной атомной технике. В частности, интенсивно поглощающий нейтроны гафний должен быть удален из циркония, употребляемого на изготовление труб, по которым циркулирует теплоноситель в котлах атомных электростанций. [c.462]

    Неорганический ионит — гидратированный диоксид циркония (ГДЦ) — в зависимости от pH раствора проявляет способность к катионному ил анионному обмену. Селективность ГДЦ к молибдат- и вольфрамат-ионам настолько высока, что эти анионы сорбируются даже в слабощелочной среде (примерно рН= 11) из минерализованных растворов. В то же время селективность ГДЦ к указанным анионам переходных металлов различается, что позволяет использовать данный сорбент для их разделения и выделения иэ минерализованных растворов. При этом разделение молибдена(VI) и вольфрама (VI) на ГДЦ производится более простым стпособом, чем на органических анионитах. [c.332]

    Ц и р к о н и й обладает высокой стойкостью к действии )а ,-банленпой серной, соляной и азотной -кислот при различных температурах. благодаря чему его начинают применят11 в химическом машиностроении. Цирконий устойчив в среде щавелевой и муравьиной кислот, солянокислого анилина, в 10—40%-ных растворах едкого натра и едкого кали. В некоторых случаях этот металл может заменить даже платину. [c.88]

    ЦИРКОН — минерал, ортосиликат циркония ZrSiOi. В качестве примесей содержит гафний, иттрий, церий, торий, уран. Основное сырье для получения циркония, Применяют в производстве огнеупорных материалов, добавляют к кварцевому стеклу, из которого изготовляют жаропрочную и кислотоупорную лабораторную посуду. Ц. используют как химически инертное вещество в приборах, работающих при высоких температурах и в химически активных средах. Прозрачные красные и коричневые кристаллы Ц. (гиацинт) используют в ювелирном деле. [c.285]

    Аналогичная реакция применяется при определении фтора. Ряд методов определения фтора основан на образовании малодиссоциированных фторидов тория или циркония (ТЬР или ZrFJ. В качестве индикатора берут ализарин (натриевая соль ализаринсульфокислоты), который является очень чувствительным реактивом по отношению к торию и цирконию, образуя с ними соединения, окрашенные в красно-фиолетовый цвет. Испытуемый раствор фтористого натрия титруют в слабокислой среде рабочим раствором азотнокислого торня или циркония. Метод применяют, главным образом, для определения малых количеств фтора в природной воде и в различных материалах. [c.427]

    Регулирование кислотности раствора. Выше отмечено, что многозарядные ионы образуют весьма прочные комплексы с ЭДТА. Поэтому цирконий можно титровать в присутствии почти всех элементов в среде [c.432]


Смотреть страницы где упоминается термин Цирконий средах: [c.71]    [c.65]    [c.57]    [c.417]    [c.511]    [c.277]    [c.290]    [c.122]    [c.251]    [c.809]    [c.834]    [c.859]    [c.34]    [c.87]    [c.431]    [c.431]    [c.590]    [c.151]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.34 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Диборид циркония средах

Дисилицид циркония средах

Иванов. Коррозионная стойкость сплавов цирконий— медь — никель в различных средах при повышенных температурах

Карбид циркония средах

Нитрид циркония средах

Цирконий, коррозионная стойкость различных средах



© 2025 chem21.info Реклама на сайте